Articles liés à Infinite Families of Exact Sums of Squares Formulas,...

Infinite Families of Exact Sums of Squares Formulas, Jacobi Elliptic Functions, Continued Fractions, and Schur Functions (Developments in Mathematics) - Couverture souple

 
9781441952134: Infinite Families of Exact Sums of Squares Formulas, Jacobi Elliptic Functions, Continued Fractions, and Schur Functions (Developments in Mathematics)

Synopsis

The problem of representing an integer as a sum of squares of integers is one of the oldest and most significant in mathematics. It goes back at least 2000 years to Diophantus, and continues more recently with the works of Fermat, Euler, Lagrange, Jacobi, Glaisher, Ramanujan, Hardy, Mordell, Andrews, and others. Jacobi's elliptic function approach dates from his epic Fundamenta Nova of 1829. Here, the author employs his combinatorial/elliptic function methods to derive many infinite families of explicit exact formulas involving either squares or triangular numbers, two of which generalize Jacobi's (1829) 4 and 8 squares identities to 4n2 or 4n(n+1) squares, respectively, without using cusp forms such as those of Glaisher or Ramanujan for 16 and 24 squares. These results depend upon new expansions for powers of various products of classical theta functions. This is the first time that infinite families of non-trivial exact explicit formulas for sums of squares have been found.

The author derives his formulas by utilizing combinatorics to combine a variety of methods and observations from the theory of Jacobi elliptic functions, continued fractions, Hankel or Turanian determinants, Lie algebras, Schur functions, and multiple basic hypergeometric series related to the classical groups. His results (in Theorem 5.19) generalize to separate infinite families each of the 21 of Jacobi's explicitly stated degree 2, 4, 6, 8 Lambert series expansions of classical theta functions in sections 40-42 of the Fundamental Nova. The author also uses a special case of his methods to give a derivation proof of the two Kac and Wakimoto (1994) conjectured identities concerning representations of a positive integer by sums of 4n2 or 4n(n+1) triangular numbers, respectively. These conjectures arose in the study of Lie algebras and have also recently been proved by Zagierusing modular forms. George Andrews says in a preface of this book, `This impressive work will undoubtedly spur others both in elliptic functions and in modular forms to build on these wonderful discoveries.'

Audience: This research monograph on sums of squares is distinguished by its diversity of methods and extensive bibliography. It contains both detailed proofs and numerous explicit examples of the theory. This readable work will appeal to both students and researchers in number theory, combinatorics, special functions, classical analysis, approximation theory, and mathematical physics.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

Acheter neuf

Afficher cet article
EUR 52,40

Autre devise

EUR 3,43 expédition vers Etats-Unis

Destinations, frais et délais

Autres éditions populaires du même titre

9781402004919: Infinite Families of Exact Sums of Squares Formulas, Jacobi Elliptic Functions, Continued Fractions, and Schur Functions

Edition présentée

ISBN 10 :  1402004915 ISBN 13 :  9781402004919
Editeur : Kluwer Academic Publishers, 2002
Couverture rigide

Résultats de recherche pour Infinite Families of Exact Sums of Squares Formulas,...

Image d'archives

Milne, Stephen C.
Edité par Springer, 2011
ISBN 10 : 1441952136 ISBN 13 : 9781441952134
Neuf Couverture souple

Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur ABLIING23Mar2411530296589

Contacter le vendeur

Acheter neuf

EUR 52,40
Autre devise
Frais de port : EUR 3,43
Vers Etats-Unis
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Milne, Stephen C.
Edité par Springer, 2011
ISBN 10 : 1441952136 ISBN 13 : 9781441952134
Neuf Couverture souple

Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. In. N° de réf. du vendeur ria9781441952134_new

Contacter le vendeur

Acheter neuf

EUR 56,45
Autre devise
Frais de port : EUR 13,71
De Royaume-Uni vers Etats-Unis
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Stephen C. Milne
Edité par Springer US Jan 2011, 2011
ISBN 10 : 1441952136 ISBN 13 : 9781441952134
Neuf Taschenbuch
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The problem of representing an integer as a sum of squares of integers is one of the oldest and most significant in mathematics. It goes back at least 2000 years to Diophantus, and continues more recently with the works of Fermat, Euler, Lagrange, Jacobi, Glaisher, Ramanujan, Hardy, Mordell, Andrews, and others. Jacobi's elliptic function approach dates from his epic Fundamenta Nova of 1829. Here, the author employs his combinatorial/elliptic function methods to derive many infinite families of explicit exact formulas involving either squares or triangular numbers, two of which generalize Jacobi's (1829) 4 and 8 squares identities to 4n2 or 4n(n+1) squares, respectively, without using cusp forms such as those of Glaisher or Ramanujan for 16 and 24 squares. These results depend upon new expansions for powers of various products of classical theta functions. This is the first time that infinite families of non-trivial exact explicit formulas for sums of squares have been found. The author derives his formulas by utilizing combinatorics to combine a variety of methods and observations from the theory of Jacobi elliptic functions, continued fractions, Hankel or Turanian determinants, Lie algebras, Schur functions, and multiple basic hypergeometric series related to the classical groups. His results (in Theorem 5.19) generalize to separate infinite families each of the 21 of Jacobi's explicitly stated degree 2, 4, 6, 8 Lambert series expansions of classical theta functions in sections 40-42 of the Fundamental Nova. The author also uses a special case of his methods to give a derivation proof of the two Kac and Wakimoto (1994) conjectured identities concerning representations of a positive integer by sums of 4n2 or 4n(n+1) triangular numbers, respectively. These conjectures arose in the study of Lie algebras and have also recently been proved by Zagier using modular forms. George Andrews says in a preface of this book, `This impressive work will undoubtedly spur others both in elliptic functions and in modular forms to build on these wonderful discoveries.' Audience: This research monograph on sums of squares is distinguished by its diversity of methods and extensive bibliography. It contains both detailed proofs and numerous explicit examples of the theory. This readable work will appeal to both students and researchers in number theory, combinatorics, special functions, classical analysis, approximation theory, and mathematical physics. 152 pp. Englisch. N° de réf. du vendeur 9781441952134

Contacter le vendeur

Acheter neuf

EUR 53,49
Autre devise
Frais de port : EUR 23
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Stephen Milne
Edité par Springer, 2011
ISBN 10 : 1441952136 ISBN 13 : 9781441952134
Neuf Couverture souple

Vendeur : Books Puddle, New York, NY, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. pp. 152. N° de réf. du vendeur 263099720

Contacter le vendeur

Acheter neuf

EUR 74,39
Autre devise
Frais de port : EUR 3,43
Vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Milne Stephen
Edité par Springer, 2011
ISBN 10 : 1441952136 ISBN 13 : 9781441952134
Neuf Couverture souple
impression à la demande

Vendeur : Majestic Books, Hounslow, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Print on Demand pp. 152 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. N° de réf. du vendeur 5829527

Contacter le vendeur

Acheter neuf

EUR 74,64
Autre devise
Frais de port : EUR 7,44
De Royaume-Uni vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Stephen C. Milne
ISBN 10 : 1441952136 ISBN 13 : 9781441952134
Neuf Paperback / softback
impression à la demande

Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback / softback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 281. N° de réf. du vendeur C9781441952134

Contacter le vendeur

Acheter neuf

EUR 67,08
Autre devise
Frais de port : EUR 15,52
De Royaume-Uni vers Etats-Unis
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Milne Stephen
Edité par Springer, 2011
ISBN 10 : 1441952136 ISBN 13 : 9781441952134
Neuf Couverture souple
impression à la demande

Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. PRINT ON DEMAND pp. 152. N° de réf. du vendeur 183099714

Contacter le vendeur

Acheter neuf

EUR 76,53
Autre devise
Frais de port : EUR 9,95
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Stephen C. Milne
Edité par Springer, 2002
ISBN 10 : 1441952136 ISBN 13 : 9781441952134
Neuf Paperback

Vendeur : Revaluation Books, Exeter, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : Brand New. 152 pages. 9.20x6.20x0.60 inches. In Stock. N° de réf. du vendeur x-1441952136

Contacter le vendeur

Acheter neuf

EUR 76,18
Autre devise
Frais de port : EUR 11,45
De Royaume-Uni vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Stephen C. Milne
Edité par Springer US, 2011
ISBN 10 : 1441952136 ISBN 13 : 9781441952134
Neuf Couverture souple
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The problem of representing an integer as a sum of squares of integers is one of the oldest and most significant in mathematics. It goes back at least 2000 years to Diophantus, and continues more recently with the works of Fermat, Euler, Lagrange, Jacobi. N° de réf. du vendeur 4175539

Contacter le vendeur

Acheter neuf

EUR 48,37
Autre devise
Frais de port : EUR 48,99
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Stephen C. Milne
ISBN 10 : 1441952136 ISBN 13 : 9781441952134
Neuf Taschenbuch
impression à la demande

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -The problem of representing an integer as a sum of squares of integers is one of the oldest and most significant in mathematics. It goes back at least 2000 years to Diophantus, and continues more recently with the works of Fermat, Euler, Lagrange, Jacobi, Glaisher, Ramanujan, Hardy, Mordell, Andrews, and others. Jacobi's elliptic function approach dates from his epic Fundamenta Nova of 1829. Here, the author employs his combinatorial/elliptic function methods to derive many infinite families of explicit exact formulas involving either squares or triangular numbers, two of which generalize Jacobi's (1829) 4 and 8 squares identities to 4n2 or 4n(n+1) squares, respectively, without using cusp forms such as those of Glaisher or Ramanujan for 16 and 24 squares. These results depend upon new expansions for powers of various products of classical theta functions. This is the first time that infinite families of non-trivial exact explicit formulas for sums of squares have been found.The author derives his formulas by utilizing combinatorics to combine a variety of methods and observations from the theory of Jacobi elliptic functions, continued fractions, Hankel or Turanian determinants, Lie algebras, Schur functions, and multiple basic hypergeometric series related to the classical groups. His results (in Theorem 5.19) generalize to separate infinite families each of the 21 of Jacobi's explicitly stated degree 2, 4, 6, 8 Lambert series expansions of classical theta functions in sections 40-42 of the Fundamental Nova. The author also uses a special case of his methods to give a derivation proof of the two Kac and Wakimoto (1994) conjectured identities concerning representations of a positive integer by sums of 4n2 or 4n(n+1) triangular numbers, respectively. These conjectures arose in the study of Lie algebras and have also recently been proved by Zagierusing modular forms. George Andrews says in a preface of this book, `This impressive work will undoubtedly spur others both in elliptic functions and in modular forms to build on these wonderful discoveries.'Audience: This research monograph on sums of squares is distinguished by its diversity of methods and extensive bibliography. It contains both detailed proofs and numerous explicit examples of the theory. This readable work will appeal to both students and researchers in number theory, combinatorics, special functions, classical analysis, approximation theory, and mathematical physics.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 152 pp. Englisch. N° de réf. du vendeur 9781441952134

Contacter le vendeur

Acheter neuf

EUR 53,49
Autre devise
Frais de port : EUR 60
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

There are 1 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre