One consequence of the pervasive use of computers is that most documents originate in digital form. Widespread use of the Internet makes them readily available. Text mining – the process of analyzing unstructured natural-language text – is concerned with how to extract information from these documents. Developed from the authors’ highly successful Springer reference on text mining, Fundamentals of Predictive Text Mining is an introductory textbook and guide to this rapidly evolving field. Integrating topics spanning the varied disciplines of data mining, machine learning, databases, and computational linguistics, this uniquely useful book also provides practical advice for text mining. In-depth discussions are presented on issues of document classification, information retrieval, clustering and organizing documents, information extraction, web-based data-sourcing, and prediction and evaluation. Background on data mining is beneficial, but not essential. Where advanced concepts are discussed that require mathematical maturity for a proper understanding, intuitive explanations are also provided for less advanced readers. Topics and features: presents a comprehensive, practical and easy-to-read introduction to text mining; includes chapter summaries, useful historical and bibliographic remarks, and classroom-tested exercises for each chapter; explores the application and utility of each method, as well as the optimum techniques for specific scenarios; provides several descriptive case studies that take readers from problem description to systems deployment in the real world; includes access to industrial-strength text-mining software that runs on any computer; describes methods that rely on basic statistical techniques, thus allowing for relevance to all languages (not just English); contains links to free downloadable software and other supplementary instruction material. Fundamentals of Predictive Text Mining is an essential resource for IT professionalsand managers, as well as a key text for advanced undergraduate computer science students and beginning graduate students. Dr. Sholom M. Weiss is a Research Staff Member with the IBM Predictive Modeling group, in Yorktown Heights, New York, and Professor Emeritus of Computer Science at Rutgers University. Dr. Nitin Indurkhya is Professor at the School of Computer Science and Engineering, University of New South Wales, Australia, as well as founder and president of data-mining consulting company Data-Miner Pty Ltd. Dr. Tong Zhang is Associate Professor at the Department of Statistics and Biostatistics at Rutgers University, New Jersey.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Dr. Sholom M. Weiss is a Research Staff Member with the IBM Predictive Modeling group, in Yorktown Heights, New York, and Professor Emeritus of Computer Science at Rutgers University. Dr. Nitin Indurkhya is Professor at the School of Computer Science and Engineering, University of New South Wales, Australia, as well as founder and president of data-mining consulting company Data-Miner Pty Ltd. Dr. Tong Zhang is Associate Professor at the Department of Statistics and Biostatistics at Rutgers University, New Jersey.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 3,55 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisEUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : AwesomeBooks, Wallingford, Royaume-Uni
paperback. Etat : Very Good. Fundamentals of Predictive Text Mining (Texts in Computer Science) This book is in very good condition and will be shipped within 24 hours of ordering. The cover may have some limited signs of wear but the pages are clean, intact and the spine remains undamaged. This book has clearly been well maintained and looked after thus far. Money back guarantee if you are not satisfied. See all our books here, order more than 1 book and get discounted shipping. . N° de réf. du vendeur 7719-9781447125655
Quantité disponible : 1 disponible(s)
Vendeur : Bahamut Media, Reading, Royaume-Uni
paperback. Etat : Very Good. Shipped within 24 hours from our UK warehouse. Clean, undamaged book with no damage to pages and minimal wear to the cover. Spine still tight, in very good condition. Remember if you are not happy, you are covered by our 100% money back guarantee. N° de réf. du vendeur 6545-9781447125655
Quantité disponible : 1 disponible(s)
Vendeur : Zubal-Books, Since 1961, Cleveland, OH, Etats-Unis
Etat : Very Good. *Price HAS BEEN REDUCED by 10% until Monday, June 9 (weekend SALE item)* 240 pp., paperback, previous owner's name neatly inked to the title page, else very good. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country. N° de réf. du vendeur ZB1314523
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : good. May show signs of wear, highlighting, writing, and previous use. This item may be a former library book with typical markings. No guarantee on products that contain supplements Your satisfaction is 100% guaranteed. Twenty-five year bookseller with shipments to over fifty million happy customers. N° de réf. du vendeur 19269362-5
Quantité disponible : 1 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Presents a comprehensive, practical and easy-to-read introduction to text miningIncludes chapter summaries, useful historical and bibliographic remarks, and classroom-tested exercises for each chapterProvides several descriptive case studies that take reade. N° de réf. du vendeur 4184507
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -One consequence of the pervasive use of computers is that most documents originate in digital form. Widespread use of the Internet makes them readily available. Text mining - the process of analyzing unstructured natural-language text - is concerned with how to extract information from these documents.Developed from the authors' highly successful Springer reference on text mining, Fundamentals of Predictive Text Mining is an introductory textbook and guide to this rapidly evolving field. Integrating topics spanning the varied disciplines of data mining, machine learning, databases, and computational linguistics, this uniquely useful book also provides practical advice for text mining. In-depth discussions are presented on issues of document classification, information retrieval, clustering and organizing documents, information extraction, web-based data-sourcing, and prediction and evaluation. Background on data mining is beneficial, but not essential. Where advanced concepts are discussed that require mathematical maturity for a proper understanding, intuitive explanations are also provided for less advanced readers.Topics and features: presents a comprehensive, practical and easy-to-read introduction to text mining; includes chapter summaries, useful historical and bibliographic remarks, and classroom-tested exercises for each chapter; explores the application and utility of each method, as well as the optimum techniques for specific scenarios; provides several descriptive case studies that take readers from problem description to systems deployment in the real world; includes access to industrial-strength text-mining software that runs on any computer; describes methods that rely on basic statistical techniques, thus allowing for relevance to all languages (not just English); contains links to free downloadable software and other supplementary instruction material.Fundamentals of Predictive Text Mining is an essential resource for IT professionals and managers, as well as a key text for advanced undergraduate computer science students and beginning graduate students.Dr. Sholom M. Weiss is a Research Staff Member with the IBM Predictive Modeling group, in Yorktown Heights, New York, and Professor Emeritus of Computer Science at Rutgers University. Dr. Nitin Indurkhya is Professor at the School of Computer Science and Engineering, University of New South Wales, Australia, as well as founder and president of data-mining consulting company Data-Miner Pty Ltd. Dr. Tong Zhang is Associate Professor at the Department of Statistics and Biostatistics at Rutgers University, New Jersey. 240 pp. Englisch. N° de réf. du vendeur 9781447125655
Quantité disponible : 2 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9781447125655_new
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - One consequence of the pervasive use of computers is that most documents originate in digital form. Widespread use of the Internet makes them readily available. Text mining - the process of analyzing unstructured natural-language text - is concerned with how to extract information from these documents.Developed from the authors' highly successful Springer reference on text mining, Fundamentals of Predictive Text Mining is an introductory textbook and guide to this rapidly evolving field. Integrating topics spanning the varied disciplines of data mining, machine learning, databases, and computational linguistics, this uniquely useful book also provides practical advice for text mining. In-depth discussions are presented on issues of document classification, information retrieval, clustering and organizing documents, information extraction, web-based data-sourcing, and prediction and evaluation. Background on data mining is beneficial, but not essential. Where advanced concepts are discussed that require mathematical maturity for a proper understanding, intuitive explanations are also provided for less advanced readers.Topics and features: presents a comprehensive, practical and easy-to-read introduction to text mining; includes chapter summaries, useful historical and bibliographic remarks, and classroom-tested exercises for each chapter; explores the application and utility of each method, as well as the optimum techniques for specific scenarios; provides several descriptive case studies that take readers from problem description to systems deployment in the real world; includes access to industrial-strength text-mining software that runs on any computer; describes methods that rely on basic statistical techniques, thus allowing for relevance to all languages (not just English); contains links to free downloadable software and other supplementary instruction material.Fundamentals of Predictive Text Mining is an essential resource for IT professionalsand managers, as well as a key text for advanced undergraduate computer science students and beginning graduate students.Dr. Sholom M. Weiss is a Research Staff Member with the IBM Predictive Modeling group, in Yorktown Heights, New York, and Professor Emeritus of Computer Science at Rutgers University. Dr. Nitin Indurkhya is Professor at the School of Computer Science and Engineering, University of New South Wales, Australia, as well as founder and president of data-mining consulting company Data-Miner Pty Ltd. Dr. Tong Zhang is Associate Professor at the Department of Statistics and Biostatistics at Rutgers University, New Jersey. N° de réf. du vendeur 9781447125655
Quantité disponible : 1 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -One consequence of the pervasive use of computers is that most documents originate in digital form. Widespread use of the Internet makes them readily available. Text mining ¿ the process of analyzing unstructured natural-language text ¿ is concerned with how to extract information from these documents.Developed from the authors¿ highly successful Springer reference on text mining, Fundamentals of Predictive Text Mining is an introductory textbook and guide to this rapidly evolving field. Integrating topics spanning the varied disciplines of data mining, machine learning, databases, and computational linguistics, this uniquely useful book also provides practical advice for text mining. In-depth discussions are presented on issues of document classification, information retrieval, clustering and organizing documents, information extraction, web-based data-sourcing, and prediction and evaluation. Background on data mining is beneficial, but not essential. Where advanced concepts are discussed that require mathematical maturity for a proper understanding, intuitive explanations are also provided for less advanced readers.Topics and features: presents a comprehensive, practical and easy-to-read introduction to text mining; includes chapter summaries, useful historical and bibliographic remarks, and classroom-tested exercises for each chapter; explores the application and utility of each method, as well as the optimum techniques for specific scenarios; provides several descriptive case studies that take readers from problem description to systems deployment in the real world; includes access to industrial-strength text-mining software that runs on any computer; describes methods that rely on basic statistical techniques, thus allowing for relevance to all languages (not just English); contains links to free downloadable software and other supplementary instruction material.Fundamentals of Predictive Text Mining is an essential resource for IT professionalsand managers, as well as a key text for advanced undergraduate computer science students and beginning graduate students.Dr. Sholom M. Weiss is a Research Staff Member with the IBM Predictive Modeling group, in Yorktown Heights, New York, and Professor Emeritus of Computer Science at Rutgers University. Dr. Nitin Indurkhya is Professor at the School of Computer Science and Engineering, University of New South Wales, Australia, as well as founder and president of data-mining consulting company Data-Miner Pty Ltd. Dr. Tong Zhang is Associate Professor at the Department of Statistics and Biostatistics at Rutgers University, New Jersey.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 240 pp. Englisch. N° de réf. du vendeur 9781447125655
Quantité disponible : 2 disponible(s)
Vendeur : Chiron Media, Wallingford, Royaume-Uni
PF. Etat : New. N° de réf. du vendeur 6666-IUK-9781447125655
Quantité disponible : 10 disponible(s)