This book addresses the challenges of data abstraction generation using a least number of database scans, compressing data through novel lossy and non-lossy schemes, and carrying out clustering and classification directly in the compressed domain. Schemes are presented which are shown to be efficient both in terms of space and time, while simultaneously providing the same or better classification accuracy. Features: describes a non-lossy compression scheme based on run-length encoding of patterns with binary valued features; proposes a lossy compression scheme that recognizes a pattern as a sequence of features and identifying subsequences; examines whether the identification of prototypes and features can be achieved simultaneously through lossy compression and efficient clustering; discusses ways to make use of domain knowledge in generating abstraction; reviews optimal prototype selection using genetic algorithms; suggests possible ways of dealing with big data problems using multiagent systems.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Dr. T. Ravindra Babu is a Principal Researcher in the E-Commerce Research Labs at Infosys Ltd., Bangalore, India. Mr. S.V. Subrahmanya is Vice President and Research Fellow at the same organization. Dr. M. Narasimha Murty is a Professor in the Department of Computer Science and Automation at the Indian Institute of Science, Bangalore, India.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Mar2411530317241
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book addresses the challenges of data abstraction generation using a least number of database scans, compressing data through novel lossy and non-lossy schemes, and carrying out clustering and classification directly in the compressed domain. Schemes are presented which are shown to be efficient both in terms of space and time, while simultaneously providing the same or better classification accuracy. Features: describes a non-lossy compression scheme based on run-length encoding of patterns with binary valued features; proposes a lossy compression scheme that recognizes a pattern as a sequence of features and identifying subsequences; examines whether the identification of prototypes and features can be achieved simultaneously through lossy compression and efficient clustering; discusses ways to make use of domain knowledge in generating abstraction; reviews optimal prototype selection using genetic algorithms; suggests possible ways of dealing with big data problems using multiagent systems. 216 pp. Englisch. N° de réf. du vendeur 9781447156062
Quantité disponible : 2 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 216. N° de réf. du vendeur 2697536950
Quantité disponible : 4 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand pp. 216 62 Illus. (3 Col.). N° de réf. du vendeur 94893161
Quantité disponible : 4 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND pp. 216. N° de réf. du vendeur 1897536956
Quantité disponible : 4 disponible(s)
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Hardback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days. N° de réf. du vendeur C9781447156062
Quantité disponible : Plus de 20 disponibles
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Hardcover. Etat : Brand New. 197 pages. 9.25x6.25x0.75 inches. In Stock. N° de réf. du vendeur x-1447156064
Quantité disponible : 2 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. N° de réf. du vendeur 4185310
Quantité disponible : Plus de 20 disponibles
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Buch. Etat : Neu. Neuware -This book addresses the challenges of data abstraction generation using a least number of database scans, compressing data through novel lossy and non-lossy schemes, and carrying out clustering and classification directly in the compressed domain. Schemes are presented which are shown to be efficient both in terms of space and time, while simultaneously providing the same or better classification accuracy. Features:describes a non-lossy compression scheme based on run-length encoding of patterns with binary valued features; proposes a lossy compression scheme that recognizes a pattern as a sequence of features and identifying subsequences; examines whether the identification of prototypes and features can be achieved simultaneously through lossy compression and efficient clustering; discusses ways to make use of domain knowledge in generating abstraction; reviews optimal prototype selection using genetic algorithms; suggests possible ways of dealing with big data problems using multiagent systems.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 216 pp. Englisch. N° de réf. du vendeur 9781447156062
Quantité disponible : 2 disponible(s)
Vendeur : preigu, Osnabrück, Allemagne
Buch. Etat : Neu. Compression Schemes for Mining Large Datasets | A Machine Learning Perspective | T. Ravindra Babu (u. a.) | Buch | xvi | Englisch | 2013 | Springer | EAN 9781447156062 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. N° de réf. du vendeur 105586269
Quantité disponible : 5 disponible(s)