Articles liés à An Introduction to Measure and Probability

An Introduction to Measure and Probability - Couverture souple

 
9781461206606: An Introduction to Measure and Probability

L'édition de cet ISBN n'est malheureusement plus disponible.

Synopsis

I. Probability Spaces.- 1. Introduction to ?.- 2. What is a probability space? Motivation.- 3. Definition of a probability space.- 4. Construction of a probability from a distribution function.- 5. Additional exercises*.- II. Integration.- 1. Integration on a probability space.- 2. Lebesgue measure on ? and Lebesgue integration.- 3. The Riemann integral and the Lebesgue integral.- 4. Probability density functions.- 5. Infinite series again.- 6. Differentiation under the integral sign.- 7. Signed measures and the Radon-Nikodym theorem*.- 8. Signed measures on ? and functions of bounded variation*.- 9. Additional exercises*.- III. Independence and Product Measures.- 1. Random vectors and Borel sets in ?n.- 2. Independence.- 3. Product measures.- 4. Infinite products.- 5. Some remarks on Markov chains*.- 6. Additional exercises*.- IV. Convergence of Random Variables and Measurable Functions.- 1. Norms for random variables and measurable functions.- 2. Continuous functions and Lp*.- 3. Pointwise convergence and convergence in measure or probability.- 4. Kolmogorov's inequality and the strong law of large numbers.- 5. Uniform integrability and truncation*.- 6. Differentiation: the Hardy-Littlewood maximal function*.- 7. Additional exercises*.- V. Conditional Expectation and an Introduction to Martingales.- 1. Conditional expectation and Hilbert space.- 2. Conditional expectation.- 3. Sufficient statistics*.- 4. Martingales.- 5. An introduction to martingale convergence.- 6. The three-series theorem and the Doob decomposition.- 7. The martingale convergence theorem.- VI. An Introduction to Weak Convergence.- 1. Motivation: empirical distributions.- 2. Weak convergence of probabilities: equivalent formulations.- 3. Weak convergence of random variables.- 4. Empirical distributions again: the Glivenko-Cantelli theorem.- 5. The characteristic function.- 6. Uniqueness and inversion of the characteristic function.- 7. The central limit theorem.- 8. Additional exercises*.- 9. Appendix*.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

(Aucun exemplaire disponible)

Chercher:



Créez une demande

Vous ne trouvez pas le livre que vous recherchez ? Nous allons poursuivre vos recherches. Si l'un de nos libraires l'ajoute aux offres sur AbeBooks, nous vous le ferons savoir !

Créez une demande

Autres éditions populaires du même titre

9780387948300: An Introduction to Measure and Probability

Edition présentée

ISBN 10 :  0387948309 ISBN 13 :  9780387948300
Editeur : Springer, 2013
Couverture souple