Thismonographdealswiththeexistenceofperiodicmotionsof Lagrangiansystemswith ndegreesoffreedom ij + V'(q) =0, where Visasingularpotential.Aprototypeofsuchaproblem, evenifitisnottheonlyphysicallyinterestingone, istheKepler problem .. q 0 q+yqr= . This, jointlywiththemoregeneralN-bodyproblem, hasalways beentheobjectofagreatdealofresearch.Mostofthoseresults arebasedonperturbationmethods, andmakeuseofthespecific featuresoftheKeplerpotential. OurapproachismoreonthelinesofNonlinearFunctional Analysis: ourmainpurposeistogiveafunctionalframefor systemswithsingularpotentials, includingtheKeplerandthe N-bodyproblemasparticularcases.PreciselyweuseCritical PointTheorytoobtainexistenceresults, qualitativeinnature, whichholdtrueforbroadclassesofpotentials.Thishighlights thatthevariationalmethods, whichhavebeenemployedtoob- tainimportantadvancesinthestudyofregularHamiltonian systems, canbesuccessfallyusedtohandlesingularpotentials aswell. Theresearchonthistopicisstillinevolution, andtherefore theresultswewillpresentarenottobeintendedasthefinal ones. Indeedamajorpurposeofourdiscussionistopresent methodsandtoolswhichhavebeenusedinstudyingsuchprob- lems. Vlll PREFACE Partofthematerialofthisvolumehasbeenpresentedina seriesoflecturesgivenbytheauthorsatSISSA, Trieste, whom wewouldliketothankfortheirhospitalityandsupport. We wishalsotothankUgoBessi, PaoloCaldiroli, FabioGiannoni, LouisJeanjean, LorenzoPisani, EnricoSerra, KazunakaTanaka, EnzoVitillaroforhelpfulsuggestions. May26,1993 Notation n 1.For x, yE IR, x. ydenotestheEuclideanScalarproduct, and IxltheEuclideannorm. 2. meas(A)denotestheLebesguemeasureofthesubset Aof n IR - 3.Wedenoteby ST =[0, T]/{a, T}theunitarycirclepara- metrizedby t E[0, T].Wewillalsowrite SI= ST=I. n 1 n 4.Wewillwrite sn = {xE IR +: Ixl =I}andn = IR \{O}. n 5.Wedenoteby LP([O, T], IR ),1 p +00, theLebesgue spaces, equippedwiththestandardnorm lIulip. l n l n 6. H (ST, IR )denotestheSobolevspaceof u E H,2(0, T; IR ) suchthat u(O) = u(T).Thenormin HIwillbedenoted by lIull2 = lIull + lIull - 7.Wedenoteby(-1-)and11-11respectivelythescalarproduct andthenormoftheHilbertspace E. 8.For uE E, EHilbertorBanachspace, wedenotetheball ofcenter uandradiusrby B(u, r) = {vE E: lIu- vii r}.Wewillalsowrite B = B(O, r). r 1 1 9.WesetA (n) = {uE H (St, n)}. k 10.For VE C (1Rxil, IR)wedenoteby V'(t, x)thegradient of Vwithrespectto x. l 11.Given f E C (M, IR), MHilbertmanifold, welet r = {uEM: f(u) a}, f-l(a, b) = {uE E: a f(u) b}. x NOTATION 12.Given f E C1(M, JR), MHilbertmanifold, wewilldenote by Zthesetofcriticalpointsof fon Mandby Zctheset Z U f-l(c, c). 13.Givenasequence UnE E, EHilbertspace, by Un ---"" Uwe willmeanthatthesequence Unconvergesweaklyto u. 14.With £(E)wewilldenotethesetoflinearandcontinuous operatorson E. 15.With Ck''''(A, JR)wewilldenotethesetoffunctions ffrom AtoJR, ktimesdifferentiablewhosek-derivativeisHolder continuousofexponent0: . Main Assumptions Wecollecthere, forthereader'sconvenience, themainassump- tionsonthepotential Vusedthroughoutthebook. (VO) VEC1(lRXO, lR), V(t+T, x)=V(t, X) V(t, x)ElRXO, (VI) V(t, x)
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 28,79 expédition depuis Royaume-Uni vers Etats-Unis
Destinations, frais et délaisEUR 23 expédition depuis Allemagne vers Etats-Unis
Destinations, frais et délaisVendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Thismonographdealswiththeexistenceofperiodicmotionsof Lagrangiansystemswith ndegreesoffreedom ij + V'(q) =0, where Visasingularpotential.Aprototypeofsuchaproblem, evenifitisnottheonlyphysicallyinterestingone,istheKepler problem . q 0 q+yqr= . This,jointlywiththemoregeneralN-bodyproblem,hasalways beentheobjectofagreatdealofresearch.Mostofthoseresults arebasedonperturbationmethods,andmakeuseofthespecific featuresoftheKeplerpotential. OurapproachismoreonthelinesofNonlinearFunctional Analysis:ourmainpurposeistogiveafunctionalframefor systemswithsingularpotentials,includingtheKeplerandthe N-bodyproblemasparticularcases.PreciselyweuseCritical PointTheorytoobtainexistenceresults,qualitativeinnature, whichholdtrueforbroadclassesofpotentials.Thishighlights thatthevariationalmethods,whichhavebeenemployedtoob tainimportantadvancesinthestudyofregularHamiltonian systems,canbesuccessfallyusedtohandlesingularpotentials aswell. Theresearchonthistopicisstillinevolution,andtherefore theresultswewillpresentarenottobeintendedasthefinal ones. Indeedamajorpurposeofourdiscussionistopresent methodsandtoolswhichhavebeenusedinstudyingsuchprob lems. Vlll PREFACE Partofthematerialofthisvolumehasbeenpresentedina seriesoflecturesgivenbytheauthorsatSISSA,Trieste,whom wewouldliketothankfortheirhospitalityandsupport. We wishalsotothankUgoBessi,PaoloCaldiroli,FabioGiannoni, LouisJeanjean,LorenzoPisani,EnricoSerra,KazunakaTanaka, EnzoVitillaroforhelpfulsuggestions. May26,1993 Notation n 1.For x, yE IR , x. ydenotestheEuclideanScalarproduct, and IxltheEuclideannorm. 2. meas(A)denotestheLebesguemeasureofthesubset Aof n IR 3.Wedenoteby ST =[0,T]/{a,T}theunitarycirclepara metrizedby t E[0,T].Wewillalsowrite SI= ST=I. n 1 n 4.Wewillwrite sn = {xE IR + : Ixl =I}andn = IR {O}. n 5.Wedenoteby LP([O,T], IR ),1~ p~+00,theLebesgue spaces,equippedwiththestandardnorm lIulip. l n l n 6. H (ST, IR )denotestheSobolevspaceof u E H ,2(0, T; IR ) suchthat u(O) = u(T).Thenormin HIwillbedenoted by lIull2 = lIull~ + lIull~ 7.Wedenoteby( 1 )and11 11respectivelythescalarproduct andthenormoftheHilbertspace E. 8.For uE E, EHilbertorBanachspace,wedenotetheball ofcenter uandradiusrby B(u,r) = {vE E: lIu- vii~ r}.Wewillalsowrite B = B(O, r). r 1 1 9.WesetA (n) = {uE H (St,n)}. k 10.For VE C (1Rxil,IR)wedenoteby V'(t, x)thegradient of Vwithrespectto x. l 11.Given f E C (M,IR), MHilbertmanifold,welet r = {uEM: f(u) ~ a}, f-l(a,b) = {uE E : a~ f(u) ~ b}. x NOTATION 12.Given f E C1(M,JR), MHilbertmanifold,wewilldenote by Zthesetofcriticalpointsof fon Mandby Zctheset Z U f-l(c, c). 13.Givenasequence UnE E, EHilbertspace,by Un ---'' Uwe willmeanthatthesequence Unconvergesweaklyto u. 14.With Pds. (E)wewilldenotethesetoflinearandcontinuous operatorson E. 15.With Ck''''(A,JR)wewilldenotethesetoffunctions ffrom AtoJR, ktimesdifferentiablewhosek-derivativeisHolder continuousofexponent0:. Main Assumptions Wecollecthere,forthereader'sconvenience,themainassump tionsonthepotential Vusedthroughoutthebook. (VO) VEC1(lRXO,lR),V(t+T,x)=V(t,X) V(t,x)ElRXO, (VI) V(t,x) 176 pp. Englisch. N° de réf. du vendeur 9781461267058
Quantité disponible : 2 disponible(s)
Vendeur : Best Price, Torrance, CA, Etats-Unis
Etat : New. SUPER FAST SHIPPING. N° de réf. du vendeur 9781461267058
Quantité disponible : 2 disponible(s)
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Mar2716030028193
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9781461267058_new
Quantité disponible : Plus de 20 disponibles
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 176. N° de réf. du vendeur 2697520413
Quantité disponible : 4 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand pp. 176 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. N° de réf. du vendeur 94876866
Quantité disponible : 4 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. I Preliminaries.- II Singular Potentials.- III The Strongly Attractive Case.- IV The Weakly Attractive Case.- V Orbits with Prescribed Energy.- VI The N-Body Problem.- VII Perturbation Results.Thismonographdealswiththeexistenceofperiodicmotionsof Lagran. N° de réf. du vendeur 4189349
Quantité disponible : Plus de 20 disponibles
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Paperback / softback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 284. N° de réf. du vendeur C9781461267058
Quantité disponible : Plus de 20 disponibles
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND pp. 176. N° de réf. du vendeur 1897520407
Quantité disponible : 4 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -LP([O,T], IR ),1~ p~+00,theLebesgue spaces,equippedwiththestandardnorm lIulip. l n l n 6. H (ST, IR )denotestheSobolevspaceof u E H ,2(0, T; IR ) suchthat u(O) = u(T).Thenormin HIwillbedenoted by lIull2 = lIull~ + lIull~ 7.Wedenoteby( 1 )and11 11respectivelythescalarproduct andthenormoftheHilbertspace E. 8.For uE E, EHilbertorBanachspace,wedenotetheball ofcenter uandradiusrby B(u,r) = {vE E: lIu- vii~ r}.Wewillalsowrite B = B(O, r). r 1 1 9.WesetA (n) = {uE H (St,n)}. k 10.For VE C (1Rxil,IR)wedenoteby V'(t, x)thegradient of Vwithrespectto x. l 11.Given f E C (M,IR), MHilbertmanifold,welet r = {uEM: f(u) ~ a}, f-l(a,b) = {uE E : a~ f(u) ~ b}. x NOTATION 12.Given f E C1(M,JR), MHilbertmanifold,wewilldenote by Zthesetofcriticalpointsof fon Mandby Zctheset Z U f-l(c, c). 13.Givenasequence UnE E, EHilbertspace,by Un ---'' Uwe willmeanthatthesequence Unconvergesweaklyto u. 14.With £(E)wewilldenotethesetoflinearandcontinuous operatorson E. 15.With Ck''''(A,JR)wewilldenotethesetoffunctions ffrom AtoJR, ktimesdifferentiablewhosek-derivativeisHolder continuousofexponent0:. Main Assumptions Wecollecthere,forthereader'sconvenience,themainassump tionsonthepotential Vusedthroughoutthebook. (VO) VEC1(lRXO,lR),V(t+T,x)=V(t,X) V(t,x)ElRXO, (VI) V(t,x)Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 176 pp. Englisch. N° de réf. du vendeur 9781461267058
Quantité disponible : 1 disponible(s)