Equations of the Ginzburg–Landau vortices have particular applications to a number of problems in physics, including phase transition phenomena in superconductors, superfluids, and liquid crystals. Building on the results presented by Bethuel, Brazis, and Helein, this current work further analyzes Ginzburg-Landau vortices with a particular emphasis on the uniqueness question.
The authors begin with a general presentation of the theory and then proceed to study problems using weighted Hölder spaces and Sobolev Spaces. These are particularly powerful tools and help us obtain a deeper understanding of the nonlinear partial differential equations associated with Ginzburg-Landau vortices. Such an approach sheds new light on the links between the geometry of vortices and the number of solutions.
Aimed at mathematicians, physicists, engineers, and grad students, this monograph will be useful in a number of contexts in the nonlinear analysis of problems arising in geometry or mathematical physics. The material presented covers recent and original results by the authors, and will serve as an excellent classroom text or a valuable self-study resource.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Mar2716030028565
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9781461271253_new
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Aimed at mathematicians, physicists, engineers, and grad students, this monograph will be useful for the nonlinear analysis of problems arising in geometry or mathematical physics. The material presented covers recent and original results by the authors, and serves as an excellent classroom text or a valuable self-study resource. 356 pp. Englisch. N° de réf. du vendeur 9781461271253
Quantité disponible : 2 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Aimed at mathematicians, physicists, engineers, and grad students, this monograph will be useful for the nonlinear analysis of problems arising in geometry or mathematical physics. The material presented covers recent and original results by the authors,. N° de réf. du vendeur 4189755
Quantité disponible : Plus de 20 disponibles
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 356. N° de réf. du vendeur 2658587588
Quantité disponible : 4 disponible(s)
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Paperback / softback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 529. N° de réf. du vendeur C9781461271253
Quantité disponible : Plus de 20 disponibles
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand pp. 356 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. N° de réf. du vendeur 51004955
Quantité disponible : 4 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND pp. 356. N° de réf. du vendeur 1858587598
Quantité disponible : 4 disponible(s)
Vendeur : preigu, Osnabrück, Allemagne
Taschenbuch. Etat : Neu. Linear and Nonlinear Aspects of Vortices | The Ginzburg-andau Model | Frank Pacard (u. a.) | Taschenbuch | x | Englisch | 2012 | Birkhäuser | EAN 9781461271253 | Verantwortliche Person für die EU: Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. N° de réf. du vendeur 106029338
Quantité disponible : 5 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 352 pages. 9.25x6.10x0.81 inches. In Stock. N° de réf. du vendeur x-1461271258
Quantité disponible : 2 disponible(s)