An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform.
Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Gareth James is a professor of data sciences and operations at the University of Southern California. He has published an extensive body of methodological work in the domain of statistical learning with particular emphasis on high-dimensional and functional data. The conceptual framework for this book grew out of his MBA elective courses in this area.
Daniela Witten is an associate professor of statistics and biostatistics at the University of Washington. Her research focuses largely on statistical machine learning in the high-dimensional setting, with an emphasis on unsupervised learning.
Trevor Hastie and Robert Tibshirani are professors of statistics at Stanford University, and are co-authors of the successful textbook Elements of Statistical Learning. Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 4,60 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisEUR 21,77 expédition depuis Etats-Unis vers France
Destinations, frais et délaisVendeur : Phatpocket Limited, Waltham Abbey, HERTS, Royaume-Uni
Etat : Good. Your purchase helps support Sri Lankan Children's Charity 'The Rainbow Centre'. Shows some signs of wear but in good overall condition. Our donations to The Rainbow Centre have helped provide an education and a safe haven to hundreds of children who live in appalling conditions. N° de réf. du vendeur Z1-U-030-01763
Quantité disponible : 1 disponible(s)
Vendeur : BooksRun, Philadelphia, PA, Etats-Unis
Hardcover. Etat : Good. 1. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported. N° de réf. du vendeur 1461471370-11-1
Quantité disponible : 1 disponible(s)
Vendeur : BooksRun, Philadelphia, PA, Etats-Unis
Hardcover. Etat : Very Good. 1. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported. N° de réf. du vendeur 1461471370-8-1
Quantité disponible : 1 disponible(s)
Vendeur : medimops, Berlin, Allemagne
Etat : good. Befriedigend/Good: Durchschnittlich erhaltenes Buch bzw. Schutzumschlag mit Gebrauchsspuren, aber vollständigen Seiten. / Describes the average WORN book or dust jacket that has all the pages present. N° de réf. du vendeur M01461471370-G
Quantité disponible : 2 disponible(s)
Vendeur : medimops, Berlin, Allemagne
Etat : very good. Gut/Very good: Buch bzw. Schutzumschlag mit wenigen Gebrauchsspuren an Einband, Schutzumschlag oder Seiten. / Describes a book or dust jacket that does show some signs of wear on either the binding, dust jacket or pages. N° de réf. du vendeur M01461471370-V
Quantité disponible : 3 disponible(s)
Vendeur : WorldofBooks, Goring-By-Sea, WS, Royaume-Uni
Paperback. Etat : Very Good. The book has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged. N° de réf. du vendeur GOR008156250
Quantité disponible : 1 disponible(s)
Vendeur : Bookmans, Tucson, AZ, Etats-Unis
Hardcover. Etat : Good. . Satisfaction 100% guaranteed. N° de réf. du vendeur mon0002094856
Quantité disponible : 1 disponible(s)
Vendeur : Bookmans, Tucson, AZ, Etats-Unis
Hardcover. Etat : Acceptable. Highlighting/Underlining/Notes etc. Satisfaction 100% guaranteed. N° de réf. du vendeur mon0002503078
Quantité disponible : 1 disponible(s)
Vendeur : UK BOOKS STORE, London, LONDO, Royaume-Uni
Hardcover. Etat : USED BOOK. USED BOOKS ! Fast Delivery US Edition and ship within 24-48 hours. Deliver by FedEx and Dhl, & Aramex, UPS, & USPS and we do accept APO and PO BOX Addresses. Order can be delivered worldwide within 7-12 days and we do have flat rate for up to 2LB. Extra shipping charges will be requested if the Book weight is more than 5 LB. This Item May be shipped from India, United states & United Kingdom. Depending on your location and availability. N° de réf. du vendeur AK 9781461471370
Quantité disponible : 4 disponible(s)
Vendeur : Studibuch, Stuttgart, Allemagne
hardcover. Etat : Gut. Seiten; 9781461471370.3 Gewicht in Gramm: 2. N° de réf. du vendeur 733186
Quantité disponible : 1 disponible(s)