The authors introduce and study the class of groups graded by root systems. They prove that if $\Phi$ is an irreducible classical root system of rank $\geq 2$ and $G$ is a group graded by $\Phi$, then under certain natural conditions on the grading, the union of the root subgroups is a Kazhdan subset of $G$. As the main application of this theorem the authors prove that for any reduced irreducible classical root system $\Phi$ of rank $\geq 2$ and a finitely generated commutative ring $R$ with $1$, the Steinberg group ${\mathrm St}_{\Phi}(R)$ and the elementary Chevalley group $\mathbb E_{\Phi}(R)$ have property $(T)$. They also show that there exists a group with property $(T)$ which maps onto all finite simple groups of Lie type and rank $\geq 2$, thereby providing a ``unified'' proof of expansion in these groups.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Mikhail Ershov, University of Virginia, Charlottesville, Virginia.
Andrei Jaikin-Zapirain, Universidad Autonoma de Madrid, Spain and Instituto de Ciencias Matematicas, Madrid, Spain.
Martin Kassabov, Cornell University, Ithaca, New York, and University of Southampton, United Kingdom.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : Antiquariat Bookfarm, Löbnitz, Allemagne
Softcover. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. Ex-library with stamp and library-signature. GOOD condition, some traces of use. C-00865 9781470426040 Sprache: Englisch Gewicht in Gramm: 150. N° de réf. du vendeur 2484704
Quantité disponible : 1 disponible(s)