Articles liés à On Sudakov's Type Decomposition of Transference...

On Sudakov's Type Decomposition of Transference Plans With Norm Costs - Couverture souple

 
9781470427665: On Sudakov's Type Decomposition of Transference Plans With Norm Costs

Synopsis

The authors consider the original strategy proposed by Sudakov for solving the Monge transportation problem with norm cost $|\cdot|_{D^*}$$\min \bigg\{ \int |\mathtt T(x) - x|_{D^*} d\mu(x), \ \mathtt T : \mathbb{R}^d \to \mathbb{R}^d, \ \nu = \mathtt T_\# \mu \bigg\},$ with $\mu$, $\nu$ probability measures in $\mathbb{R}^d$ and $\mu$ absolutely continuous w.r.t. $\mathcal{L}^d$. The key idea in this approach is to decompose (via disintegration of measures) the Kantorovich optimal transportation problem into a family of transportation problems in $Z_\alpha\times \mathbb{R}^d$, where $\{Z_\alpha\}_{\alpha\in\mathfrak{A}} \subset \mathbb{R}^d$ are disjoint regions such that the construction of an optimal map $\mathtt T_\alpha : Z_\alpha \to \mathbb{R}^d$ is simpler than in the original problem, and then to obtain $\mathtt T$ by piecing together the maps $\mathtt T_\alpha$. When the norm $|{\cdot}|_{D^*}$ is strictly convex, the sets $Z_\alpha$ are a family of $1$-dimensional segments determined by the Kantorovich potential called optimal rays, while the existence of the map $\mathtt T_\alpha$ is straightforward provided one can show that the disintegration of $\mathcal L^d$ (and thus of $\mu$) on such segments is absolutely continuous w.r.t. the $1$-dimensional Hausdorff measure. When the norm $|{\cdot}|_{D^*}$ is not strictly convex, the main problems in this kind of approach are two: first, to identify a suitable family of regions $\{Z_\alpha\}_{\alpha\in\mathfrak{A}}$ on which the transport problem decomposes into simpler ones, and then to prove the existence of optimal maps. In this paper the authors show how these difficulties can be overcome, and that the original idea of Sudakov can be successfully implemented. The results yield a complete characterization of the Kantorovich optimal transportation problem, whose straightforward corollary is the solution of the Monge problem in each set $Z_\alpha$ and then in $\mathbb{R}^d$. The strategy is sufficiently powerful to be applied to other optimal transportation problems.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Stefano Bianchini, SISSA, Trieste, Italy.

Sara Daneri, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Germany.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Acheter D'occasion

Ex-library with stamp and library-signature...
Afficher cet article

EUR 7 expédition depuis Allemagne vers France

Destinations, frais et délais

Résultats de recherche pour On Sudakov's Type Decomposition of Transference...

Image fournie par le vendeur

Bianchini, Stefano; Daneri, Sara
ISBN 10 : 1470427664 ISBN 13 : 9781470427665
Ancien ou d'occasion Softcover

Vendeur : Antiquariat Bookfarm, Löbnitz, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Softcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. C-03309 9781470427665 Sprache: Englisch Gewicht in Gramm: 550. N° de réf. du vendeur 2489215

Contacter le vendeur

Acheter D'occasion

EUR 9,80
Autre devise
Frais de port : EUR 7
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier