Dilations, Linear Matrix Inequalities, the Matrix Cube Problem and Beta Distributions - Couverture souple

Helton, J. William; Klep, Igor; McCullough, Scott; Schweighofer, Markus

 
9781470434557: Dilations, Linear Matrix Inequalities, the Matrix Cube Problem and Beta Distributions

Synopsis

An operator $C$ on a Hilbert space $\mathcal H$ dilates to an operator $T$ on a Hilbert space $\mathcal K$ if there is an isometry $V:\mathcal H\to \mathcal K$ such that $C= V^* TV$. A main result of this paper is, for a positive integer $d$, the simultaneous dilation, up to a sharp factor $\vartheta (d)$, expressed as a ratio of $\Gamma $ functions for $d$ even, of all $d\times d$ symmetric matrices of operator norm at most one to a collection of commuting self-adjoint contraction operators on a Hilbert space.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

J. William Helton, University of California, San Diego, California.

Igor Klep, The University of Auckland, New Zealand.

Scott McCullough, University of Florida, Gainesville, Florida.

Markus Schweighofer, Universitat Konstanz, Germany.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.