Automorphisms of Fusion Systems of Finite Simple Groups of Lie Type - Couverture souple

Broto, Carles; Moller, Jesper M.; Oliver, Bob

 
9781470437725: Automorphisms of Fusion Systems of Finite Simple Groups of Lie Type

Synopsis

For a finite group $G$ of Lie type and a prime $p$, the authors compare the automorphism groups of the fusion and linking systems of $G$ at $p$ with the automorphism group of $G$ itself. When $p$ is the defining characteristic of $G$, they are all isomorphic, with a very short list of exceptions. When $p$ is different from the defining characteristic, the situation is much more complex but can always be reduced to a case where the natural map from $\mathrm{Out}(G)$ to outer automorphisms of the fusion or linking system is split surjective. This work is motivated in part by questions involving extending the local structure of a group by a group of automorphisms, and in part by wanting to describe self homotopy equivalences of $BG^\wedge _p$ in terms of $\mathrm{Out}(G)$.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Carles Broto, Universitat Autonoma de Barcelona, Bellaterra, Spain.

Jesper M. Moller, Matematisk Institut, Kobenhavn, Denmark.

Bob Oliver, Universite Paris 13, Villetaneuse, France.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.