The so-called ""pinched disk'' model of the Mandelbrot set is due to A. Douady, J. H. Hubbard and W. P. Thurston. It can be described in the language of geodesic laminations. The combinatorial model is the quotient space of the unit disk under an equivalence relation that, loosely speaking, `""pinches""' the disk in the plane (whence the name of the model). The significance of the model lies in particular in the fact that this quotient is planar and therefore can be easily visualized. The conjecture that the Mandelbrot set is actually homeomorphic to this model is equivalent to the celebrated MLC conjecture stating that the Mandelbrot set is locally connected. For parameter spaces of higher degree polynomials no combinatorial model is known.
One possible reason may be that the higher degree analog of the MLC conjecture is known to be false. The authors investigate to which extent a geodesic lamination is determined by the location of its critical sets and when different choices of critical sets lead to essentially the same lamination. This yields models of various parameter spaces of laminations similar to the ``pinched disk'' model of the Mandelbrot set.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Alexander Blokh, University of Alabama at Birmingham, AL, USA.
Lex Oversteegen, University of Alabama at Birmingham, AL, USA.
Ross Ptacek, National Research University Higher School of Economics, Moscow, Russia.
Vladlen Timorin, National Research University Higher School of Economics, Moscow, Russia.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 7 expédition depuis Allemagne vers France
Destinations, frais et délaisEUR 16,24 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisVendeur : Literary Cat Books, Machynlleth, Powys, WALES, Royaume-Uni
Original decorated wrappers. Etat : New. First Edition. Light shelfwear. ; Octavo; 105 pages. N° de réf. du vendeur LCH46413
Quantité disponible : 1 disponible(s)
Vendeur : Antiquariat Bookfarm, Löbnitz, Allemagne
Softcover. Ex-library in GOOD condition with library-signature and stamp(s). Some traces of use. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. C-00075 9781470441760 Sprache: Englisch Gewicht in Gramm: 350. N° de réf. du vendeur 2482574
Quantité disponible : 1 disponible(s)
Vendeur : Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlande
Etat : New. N° de réf. du vendeur V9781470441760
Quantité disponible : 1 disponible(s)
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
PAP. Etat : New. New Book. Shipped from UK. Established seller since 2000. N° de réf. du vendeur FW-9781470441760
Quantité disponible : 6 disponible(s)
Vendeur : Rarewaves.com UK, London, Royaume-Uni
Paperback. Etat : New. The so-called ""pinched disk'' model of the Mandelbrot set is due to A. Douady, J. H. Hubbard and W. P. Thurston. It can be described in the language of geodesic laminations. The combinatorial model is the quotient space of the unit disk under an equivalence relation that, loosely speaking, `""pinches""' the disk in the plane (whence the name of the model). The significance of the model lies in particular in the fact that this quotient is planar and therefore can be easily visualized. The conjecture that the Mandelbrot set is actually homeomorphic to this model is equivalent to the celebrated MLC conjecture stating that the Mandelbrot set is locally connected. For parameter spaces of higher degree polynomials no combinatorial model is known.One possible reason may be that the higher degree analog of the MLC conjecture is known to be false. The authors investigate to which extent a geodesic lamination is determined by the location of its critical sets and when different choices of critical sets lead to essentially the same lamination. This yields models of various parameter spaces of laminations similar to the ``pinched disk'' model of the Mandelbrot set. N° de réf. du vendeur LU-9781470441760
Quantité disponible : 3 disponible(s)
Vendeur : Rarewaves.com USA, London, LONDO, Royaume-Uni
Paperback. Etat : New. The so-called ""pinched disk'' model of the Mandelbrot set is due to A. Douady, J. H. Hubbard and W. P. Thurston. It can be described in the language of geodesic laminations. The combinatorial model is the quotient space of the unit disk under an equivalence relation that, loosely speaking, `""pinches""' the disk in the plane (whence the name of the model). The significance of the model lies in particular in the fact that this quotient is planar and therefore can be easily visualized. The conjecture that the Mandelbrot set is actually homeomorphic to this model is equivalent to the celebrated MLC conjecture stating that the Mandelbrot set is locally connected. For parameter spaces of higher degree polynomials no combinatorial model is known.One possible reason may be that the higher degree analog of the MLC conjecture is known to be false. The authors investigate to which extent a geodesic lamination is determined by the location of its critical sets and when different choices of critical sets lead to essentially the same lamination. This yields models of various parameter spaces of laminations similar to the ``pinched disk'' model of the Mandelbrot set. N° de réf. du vendeur LU-9781470441760
Quantité disponible : 3 disponible(s)
Vendeur : moluna, Greven, Allemagne
Einband - flex.(Paperback). Etat : New. Investigates to which extent a geodesic lamination is determined by the location of its critical sets and when different choices of critical sets lead to essentially the same lamination. This yields models of various parameter spaces of laminations similar . N° de réf. du vendeur 595975234
Quantité disponible : 5 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 105 pages. 9.92x6.93x0.32 inches. In Stock. N° de réf. du vendeur __1470441764
Quantité disponible : 2 disponible(s)
Vendeur : Kennys Bookstore, Olney, MD, Etats-Unis
Etat : New. N° de réf. du vendeur V9781470441760
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 41453311-n
Quantité disponible : 4 disponible(s)