This book gives a unified, complete, and self-contained exposition of the main algebraic theorems of invariant theory for matrices in a characteristic free approach. More precisely, it contains the description of polynomial functions in several variables on the set of $m\times m$ matrices with coefficients in an infinite field or even the ring of integers, invariant under simultaneous conjugation.
Following Hermann Weyl's classical approach, the ring of invariants is described by formulating and proving the first fundamental theorem that describes a set of generators in the ring of invariants, and the second fundamental theorem that describes relations between these generators. The authors study both the case of matrices over a field of characteristic 0 and the case of matrices over a field of positive characteristic. While the case of characteristic 0 can be treated following a classical approach, the case of positive characteristic (developed by Donkin and Zubkov) is much harder. A presentation of this case requires the development of a collection of tools. These tools and their application to the study of invariants are exlained in an elementary, self-contained way in the book.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Corrado De Concini, Sapienza Universita di Roma, Rome, Italy.
Claudio Procesi, Sapienza Universita di Roma, Rome, Italy.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 7 expédition depuis Allemagne vers France
Destinations, frais et délaisEUR 3 expédition depuis Irlande vers France
Destinations, frais et délaisVendeur : Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlande
Etat : New. 2017. Paperback. . . . . . N° de réf. du vendeur V9781470441876
Quantité disponible : 1 disponible(s)
Vendeur : Antiquariat Bookfarm, Löbnitz, Allemagne
Softcover. 151 p. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. C-04725 9781470441876 Sprache: Englisch Gewicht in Gramm: 550. N° de réf. du vendeur 2490965
Quantité disponible : 1 disponible(s)
Vendeur : Rarewaves.com UK, London, Royaume-Uni
Paperback. Etat : New. This book gives a unified, complete, and self-contained exposition of the main algebraic theorems of invariant theory for matrices in a characteristic free approach. More precisely, it contains the description of polynomial functions in several variables on the set of $m\times m$ matrices with coefficients in an infinite field or even the ring of integers, invariant under simultaneous conjugation.Following Hermann Weyl's classical approach, the ring of invariants is described by formulating and proving the first fundamental theorem that describes a set of generators in the ring of invariants, and the second fundamental theorem that describes relations between these generators. The authors study both the case of matrices over a field of characteristic 0 and the case of matrices over a field of positive characteristic. While the case of characteristic 0 can be treated following a classical approach, the case of positive characteristic (developed by Donkin and Zubkov) is much harder. A presentation of this case requires the development of a collection of tools. These tools and their application to the study of invariants are exlained in an elementary, self-contained way in the book. N° de réf. du vendeur LU-9781470441876
Quantité disponible : 2 disponible(s)
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
PAP. Etat : New. New Book. Shipped from UK. Established seller since 2000. N° de réf. du vendeur FW-9781470441876
Quantité disponible : 4 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 153 pages. 10.00x7.00x0.50 inches. In Stock. N° de réf. du vendeur __147044187X
Quantité disponible : 2 disponible(s)
Vendeur : Rarewaves.com USA, London, LONDO, Royaume-Uni
Paperback. Etat : New. This book gives a unified, complete, and self-contained exposition of the main algebraic theorems of invariant theory for matrices in a characteristic free approach. More precisely, it contains the description of polynomial functions in several variables on the set of $m\times m$ matrices with coefficients in an infinite field or even the ring of integers, invariant under simultaneous conjugation.Following Hermann Weyl's classical approach, the ring of invariants is described by formulating and proving the first fundamental theorem that describes a set of generators in the ring of invariants, and the second fundamental theorem that describes relations between these generators. The authors study both the case of matrices over a field of characteristic 0 and the case of matrices over a field of positive characteristic. While the case of characteristic 0 can be treated following a classical approach, the case of positive characteristic (developed by Donkin and Zubkov) is much harder. A presentation of this case requires the development of a collection of tools. These tools and their application to the study of invariants are exlained in an elementary, self-contained way in the book. N° de réf. du vendeur LU-9781470441876
Quantité disponible : 2 disponible(s)
Vendeur : Kennys Bookstore, Olney, MD, Etats-Unis
Etat : New. 2017. Paperback. . . . . . Books ship from the US and Ireland. N° de réf. du vendeur V9781470441876
Quantité disponible : 1 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Provides a unified, complete, and self-contained exposition of the main algebraic theorems of invariant theory for matrices in a characteristic free approach. More precisely, it contains the description of polynomial functions in several variables on the se. N° de réf. du vendeur 595975240
Quantité disponible : 4 disponible(s)
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Paperback / softback. Etat : New. New copy - Usually dispatched within 4 working days. 295. N° de réf. du vendeur B9781470441876
Quantité disponible : 4 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. pp. 153. N° de réf. du vendeur 379825093
Quantité disponible : 3 disponible(s)