Two major themes drive this article: identifying the minimal structure necessary to formulate quaternionic operator theory and revealing a deep relation between complex and quaternionic operator theory.
The theory for quaternionic right linear operators is usually formulated under the assumption that there exists not only a right- but also a left-multiplication on the considered Banach space V . This has technical reasons, as the space of bounded operators on V is otherwise not a quaternionic linear space. A right linear operator is however only associated with the right multiplication on the space and in certain settings, for instance on quaternionic Hilbert spaces, the left multiplication is not defined a priori, but must be chosen randomly. Spectral properties of an operator should hence be independent of the left multiplication on the space.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Jonathan Gantner, Politecnico di Milano, Italy
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : Antiquariat Bookfarm, Löbnitz, Allemagne
Softcover. Ex-library in GOOD condition with library-signature and stamp(s). Some traces of use. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. C-00030 9781470442385 Sprache: Englisch Gewicht in Gramm: 350. N° de réf. du vendeur 2482529
Quantité disponible : 1 disponible(s)
Vendeur : Literary Cat Books, Machynlleth, Powys, WALES, Royaume-Uni
Original Wrappers. Etat : Near Fine. Etat de la jaquette : No Dust Jacket. First Edition; First Impression. Light wear to spine, covers & corners. ; Memoirs of the American Mathematical Society. September 2020. Volume 267. Number 1297; 25.3 x 17.8 x 0.8cms; v. 101 pages. N° de réf. du vendeur LCB85251
Quantité disponible : 1 disponible(s)