We develop a theory of average sizes of kernels of generic matrices with support constraints defined in terms of graphs and hypergraphs. We apply this theory to study unipotent groups associated with graphs. In particular, we establish strong uniformity results pertaining to zeta functions enumerating conjugacy classes of these groups. We deduce that the numbers of conjugacy classes of Fq-points of the groups under consideration depend polynomially on q. Our approach combines group theory, graph theory, toric geometry, and p-adic integration.
Our uniformity results are in line with a conjecture of Higman on the numbers of conjugacy classes of unitriangular matrix groups. Our findings are, however, in stark contrast to related results by Belkale and Brosnan on the numbers of generic symmetric matrices of given rank associated with graphs.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Tobias Rossmann, University of Galway, Ireland.
Christopher Voll, Universitat Bielefeld, Germany.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 2,24 expédition vers Etats-Unis
Destinations, frais et délaisEUR 2,24 expédition vers Etats-Unis
Destinations, frais et délaisVendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 47521589-n
Quantité disponible : 9 disponible(s)
Vendeur : Rarewaves.com USA, London, LONDO, Royaume-Uni
Paperback. Etat : New. We develop a theory of average sizes of kernels of generic matrices with support constraints defined in terms of graphs and hypergraphs. We apply this theory to study unipotent groups associated with graphs. In particular, we establish strong uniformity results pertaining to zeta functions enumerating conjugacy classes of these groups. We deduce that the numbers of conjugacy classes of Fq-points of the groups under consideration depend polynomially on q. Our approach combines group theory, graph theory, toric geometry, and p-adic integration.Our uniformity results are in line with a conjecture of Higman on the numbers of conjugacy classes of unitriangular matrix groups. Our findings are, however, in stark contrast to related results by Belkale and Brosnan on the numbers of generic symmetric matrices of given rank associated with graphs. N° de réf. du vendeur LU-9781470468682
Quantité disponible : 7 disponible(s)
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
PAP. Etat : New. New Book. Shipped from UK. Established seller since 2000. N° de réf. du vendeur FW-9781470468682
Quantité disponible : 14 disponible(s)
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 47521589-n
Quantité disponible : 14 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 47521589
Quantité disponible : 9 disponible(s)
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Paperback / softback. Etat : New. New copy - Usually dispatched within 4 working days. 118. N° de réf. du vendeur B9781470468682
Quantité disponible : 14 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 120 pages. In Stock. N° de réf. du vendeur __1470468689
Quantité disponible : 2 disponible(s)
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 47521589
Quantité disponible : 14 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Buch. Etat : Neu. Neuware. N° de réf. du vendeur 9781470468682
Quantité disponible : 2 disponible(s)
Vendeur : Rarewaves.com UK, London, Royaume-Uni
Paperback. Etat : New. We develop a theory of average sizes of kernels of generic matrices with support constraints defined in terms of graphs and hypergraphs. We apply this theory to study unipotent groups associated with graphs. In particular, we establish strong uniformity results pertaining to zeta functions enumerating conjugacy classes of these groups. We deduce that the numbers of conjugacy classes of Fq-points of the groups under consideration depend polynomially on q. Our approach combines group theory, graph theory, toric geometry, and p-adic integration.Our uniformity results are in line with a conjecture of Higman on the numbers of conjugacy classes of unitriangular matrix groups. Our findings are, however, in stark contrast to related results by Belkale and Brosnan on the numbers of generic symmetric matrices of given rank associated with graphs. N° de réf. du vendeur LU-9781470468682
Quantité disponible : 7 disponible(s)