This book is an introduction to the geometry of complex algebraic varieties. It is intended for students who have learned algebra, analysis, and topology, as taught in standard undergraduate courses. So it is a suitable text for a beginning graduate course or an advanced undergraduate course.
The book begins with a study of plane algebraic curves, then introduces affine and projective varieties, going on to dimension and construcibility. $\mathcal{O}$-modules (quasicoherent sheaves) are defined without reference to sheaf theory, and their cohomology is defined axiomatically. The Riemann-Roch Theorem for curves is proved using projection to the projective line.
Some of the points that aren't always treated in beginning courses are Hensel's Lemma, Chevalley's Finiteness Theorem, and the Birkhoff-Grothendieck Theorem. The book contains extensive discussions of finite group actions, lines in $\mathbb{P}^3$, and double planes, and it ends with applications of the Riemann-Roch Theorem.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Michael Artin, Massachusetts Institute of Technology, Cambridge, MA.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 9,48 expédition depuis Etats-Unis vers France
Destinations, frais et délaisEUR 3 expédition depuis Irlande vers France
Destinations, frais et délaisVendeur : Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlande
Etat : New. 2022. Paperback. . . . . . N° de réf. du vendeur V9781470471118
Quantité disponible : Plus de 20 disponibles
Vendeur : Rarewaves.com UK, London, Royaume-Uni
Paperback. Etat : New. This book is an introduction to the geometry of complex algebraic varieties. It is intended for students who have learned algebra, analysis, and topology, as taught in standard undergraduate courses. So it is a suitable text for a beginning graduate course or an advanced undergraduate course.The book begins with a study of plane algebraic curves, then introduces affine and projective varieties, going on to dimension and construcibility. $\mathcal{O}$-modules (quasicoherent sheaves) are defined without reference to sheaf theory, and their cohomology is defined axiomatically. The Riemann-Roch Theorem for curves is proved using projection to the projective line.Some of the points that aren't always treated in beginning courses are Hensel's Lemma, Chevalley's Finiteness Theorem, and the Birkhoff-Grothendieck Theorem. The book contains extensive discussions of finite group actions, lines in $\mathbb{P}^3$, and double planes, and it ends with applications of the Riemann-Roch Theorem. N° de réf. du vendeur LU-9781470471118
Quantité disponible : 11 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. N° de réf. du vendeur 675427154
Quantité disponible : Plus de 20 disponibles
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 322 pages. 9.96x7.05x0.83 inches. In Stock. N° de réf. du vendeur __1470471116
Quantité disponible : 2 disponible(s)
Vendeur : Rarewaves.com USA, London, LONDO, Royaume-Uni
Paperback. Etat : New. This book is an introduction to the geometry of complex algebraic varieties. It is intended for students who have learned algebra, analysis, and topology, as taught in standard undergraduate courses. So it is a suitable text for a beginning graduate course or an advanced undergraduate course.The book begins with a study of plane algebraic curves, then introduces affine and projective varieties, going on to dimension and construcibility. $\mathcal{O}$-modules (quasicoherent sheaves) are defined without reference to sheaf theory, and their cohomology is defined axiomatically. The Riemann-Roch Theorem for curves is proved using projection to the projective line.Some of the points that aren't always treated in beginning courses are Hensel's Lemma, Chevalley's Finiteness Theorem, and the Birkhoff-Grothendieck Theorem. The book contains extensive discussions of finite group actions, lines in $\mathbb{P}^3$, and double planes, and it ends with applications of the Riemann-Roch Theorem. N° de réf. du vendeur LU-9781470471118
Quantité disponible : 11 disponible(s)
Vendeur : BooksRun, Philadelphia, PA, Etats-Unis
Paperback. Etat : Very Good. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported. N° de réf. du vendeur 1470471116-8-1
Quantité disponible : 1 disponible(s)
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Paperback / softback. Etat : New. New copy - Usually dispatched within 4 working days. 271. N° de réf. du vendeur B9781470471118
Quantité disponible : Plus de 20 disponibles
Vendeur : Kennys Bookstore, Olney, MD, Etats-Unis
Etat : New. 2022. Paperback. . . . . . Books ship from the US and Ireland. N° de réf. du vendeur V9781470471118
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 44732543-n
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 44732543-n
Quantité disponible : Plus de 20 disponibles