In order to rea1ize real-time medica1 imaging systems, such as are used for computed tomography, automated miscroscopy, dynamic radioisotope imaging, etc., special techno1ogy is required. The high-speed image sour ce must be successfu11y married with the u1tra- high-speed computer. Usua11y the ordinary genera1-purpose computer is found to be inadequate to the image generation and/or image pro- cessing task. The ordinary computer executes instructions at be- tween 1 and 10 million per second. Speed has improved by only about a factor of 10 during the past 20 years. In contrast a typical com- puter used in recognizing blood cell images at 10,000 per hour must execute instructions at between 1 billion and 10 billion per second. Simi1ar execution rates are required to construct a computed tomogra- phy image in real-time (1 to 10 seconds). For the reasons given above, engineering development in image generation and processing in the field of biomedicine has become a discipline unto itself; a discipline wherein the computer engineer is driven to design extremely high-speed machines that far surpass the ordinary computer and the x-ray, radioisotope, or microscope scanner designer must also produce equipment whose specifications extend far beyond the state-of-the-art.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Mar2716030092968
Quantité disponible : Plus de 20 disponibles
Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis
Paperback. Etat : new. Paperback. In order to rea1ize real-time medica1 imaging systems, such as are used for computed tomography, automated miscroscopy, dynamic radioisotope imaging, etc., special techno1ogy is required. The high-speed image sour ce must be successfu11y married with the u1tra- high-speed computer. Usua11y the ordinary genera1-purpose computer is found to be inadequate to the image generation and/or image pro- cessing task. The ordinary computer executes instructions at be- tween 1 and 10 million per second. Speed has improved by only about a factor of 10 during the past 20 years. In contrast a typical com- puter used in recognizing blood cell images at 10,000 per hour must execute instructions at between 1 billion and 10 billion per second. Simi1ar execution rates are required to construct a computed tomogra- phy image in real-time (1 to 10 seconds).For the reasons given above, engineering development in image generation and processing in the field of biomedicine has become a discipline unto itself; a discipline wherein the computer engineer is driven to design extremely high-speed machines that far surpass the ordinary computer and the x-ray, radioisotope, or microscope scanner designer must also produce equipment whose specifications extend far beyond the state-of-the-art. In order to rea1ize real-time medica1 imaging systems, such as are used for computed tomography, automated miscroscopy, dynamic radioisotope imaging, etc., special techno1ogy is required. The high-speed image sour ce must be successfu11y married with the u1traA high-speed computer. Usua11y the ordinary genera1-purpose computer is found to be inadequate to the image generation and/or image proA cessing task. The ordinary computer executes instructions at beA tween 1 and 10 million per second. Speed has improved by only about a factor of 10 during the past 20 years. In contrast a typical comA puter used in recognizing blood cell images at 10,000 per hour must execute instructions at between 1 billion and 10 billion per second. Simi1ar execution rates are required to construct a computed tomograA phy image in real-time (1 to 10 seconds). For the reasons given above, engineering development in image generation and processing in the field of biomedicine has become a discipline unto itself; a discipline wherein the computer engineer is driven to design extremely high-speed machines that far surpass the ordinary computer and the x-ray, radioisotope, or microscope scanner designer must also produce equipment whose specifications extend far beyond the state-of-the Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9781475701234
Quantité disponible : 1 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9781475701234_new
Quantité disponible : Plus de 20 disponibles
Vendeur : Chiron Media, Wallingford, Royaume-Uni
PF. Etat : New. N° de réf. du vendeur 6666-IUK-9781475701234
Quantité disponible : 10 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In order to rea1ize real-time medica1 imaging systems, such as are used for computed tomography, automated miscroscopy, dynamic radioisotope imaging, etc., special techno1ogy is required. The high-speed image sour ce must be successfu11y married with the u1tra high-speed computer. Usua11y the ordinary genera1-purpose computer is found to be inadequate to the image generation and/or image pro cessing task. The ordinary computer executes instructions at be tween 1 and 10 million per second. Speed has improved by only about a factor of 10 during the past 20 years. In contrast a typical com puter used in recognizing blood cell images at 10,000 per hour must execute instructions at between 1 billion and 10 billion per second. Simi1ar execution rates are required to construct a computed tomogra phy image in real-time (1 to 10 seconds). For the reasons given above, engineering development in image generation and processing in the field of biomedicine has become a discipline unto itself; a discipline wherein the computer engineer is driven to design extremely high-speed machines that far surpass the ordinary computer and the x-ray, radioisotope, or microscope scanner designer must also produce equipment whose specifications extend far beyond the state-of-the-art. 272 pp. Englisch. N° de réf. du vendeur 9781475701234
Quantité disponible : 2 disponible(s)
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Paperback / softback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days. N° de réf. du vendeur C9781475701234
Quantité disponible : Plus de 20 disponibles
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. reprint edition. 260 pages. 10.00x7.01x0.64 inches. In Stock. N° de réf. du vendeur x-1475701233
Quantité disponible : 2 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. General.- Towards an Image Analysis Center for Medicine.- 1. Introduction.- 2. The Interactive Image Analysis System.- 2.1 The Input Units.- 2.2 The Image Display System.- 2.3 The Computer System.- 3. The Computerized Microscope.- 3.1 The Input System.- 3.2. N° de réf. du vendeur 4206705
Quantité disponible : Plus de 20 disponibles
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -In order to rea1ize real-time medica1 imaging systems, such as are used for computed tomography, automated miscroscopy, dynamic radioisotope imaging, etc., special techno1ogy is required. The high-speed image sour ce must be successfu11y married with the u1tra high-speed computer. Usua11y the ordinary genera1-purpose computer is found to be inadequate to the image generation and/or image pro cessing task. The ordinary computer executes instructions at be tween 1 and 10 million per second. Speed has improved by only about a factor of 10 during the past 20 years. In contrast a typical com puter used in recognizing blood cell images at 10,000 per hour must execute instructions at between 1 billion and 10 billion per second. Simi1ar execution rates are required to construct a computed tomogra phy image in real-time (1 to 10 seconds). For the reasons given above, engineering development in image generation and processing in the field of biomedicine has become a discipline unto itself; a discipline wherein the computer engineer is driven to design extremely high-speed machines that far surpass the ordinary computer and the x-ray, radioisotope, or microscope scanner designer must also produce equipment whose specifications extend far beyond the state-of-the-art.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 272 pp. Englisch. N° de réf. du vendeur 9781475701234
Quantité disponible : 1 disponible(s)
Vendeur : preigu, Osnabrück, Allemagne
Taschenbuch. Etat : Neu. Real-Time Medical Image Processing | Morio Onoe | Taschenbuch | xvi | Englisch | 2012 | Springer | EAN 9781475701234 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. N° de réf. du vendeur 105282331
Quantité disponible : 5 disponible(s)