A Distribution-Free Theory of Nonparametric Regression - Couverture souple

Györfi, László; Kohler, Michael; Krzyzak, Adam

 
9781475777024: A Distribution-Free Theory of Nonparametric Regression

Synopsis

Why is Nonparametric Regression Important? * How to Construct Nonparametric Regression Estimates * Lower Bounds * Partitioning Estimates * Kernel Estimates * k-NN Estimates * Splitting the Sample * Cross Validation * Uniform Laws of Large Numbers * Least Squares Estimates I: Consistency * Least Squares Estimates II: Rate of Convergence * Least Squares Estimates III: Complexity Regularization * Consistency of Data-Dependent Partitioning Estimates * Univariate Least Squares Spline Estimates * Multivariate Least Squares Spline Estimates * Neural Networks Estimates * Radial Basis Function Networks * Orthogonal Series Estimates * Advanced Techniques from Empirical Process Theory * Penalized Least Squares Estimates I: Consistency * Penalized Least Squares Estimates II: Rate of Convergence * Dimension Reduction Techniques * Strong Consistency of Local Averaging Estimates * Semi-Recursive Estimates * Recursive Estimates * Censored Observations * Dependent Observations

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

Autres éditions populaires du même titre

9780387954417: A Distribution-Free Theory of Nonparametric Regression

Edition présentée

ISBN 10 :  0387954414 ISBN 13 :  9780387954417
Editeur : Springer-Verlag New York Inc., 2002
Couverture rigide