How does an Information Processor assign legitimate numerical values to probabilities? One very powerful method to achieve this goal is through the Maximum Entropy Principle. Let a model insert information into a probability distribution by specifying constraint functions and their averages. Then, maximize the amount of missing information that remains after taking this step. The quantitative measure of the amount of missing information is Shannon's information entropy. Examples are given showing how the Maximum Entropy Principle assigns numerical values to the probabilities in coin tossing, dice rolling, statistical mechanics , and other inferential scenarios. The Maximum Entropy Principle also eliminates the mystery as to the origin of the mathematical expressions underlying all probability distributions. The MEP derivation for the Gaussian and generalized Cauchy distributions is shown in detail. The MEP is also related to Fisher information and the Kullback-Leibler measure of relative entropy. The initial examples shown are a prelude to a more in-depth discussion of Information Geometry.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
How does an Information Processor assign legitimate numerical values to probabilities? One very powerful method to achieve this goal is through the Maximum Entropy Principle. Let a model insert information into a probability distribution by specifying constraint functions and their averages. Then, maximize the amount of missing information that remains after taking this step. The quantitative measure of the amount of missing information is Shannon's information entropy. Examples are given showing how the Maximum Entropy Principle assigns numerical values to the probabilities in coin tossing, dice rolling, statistical mechanics , and other inferential scenarios. The Maximum Entropy Principle also eliminates the mystery as to the origin of the mathematical expressions underlying all probability distributions. The MEP derivation for the Gaussian and generalized Cauchy distributions is shown in detail. The MEP is also related to Fisher information and the Kullback-Leibler measure of relative entropy. The initial examples shown are a prelude to a more in-depth discussion of Information Geometry.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : HPB-Red, Dallas, TX, Etats-Unis
paperback. Etat : Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! N° de réf. du vendeur S_430882105
Quantité disponible : 1 disponible(s)
Vendeur : HPB-Ruby, Dallas, TX, Etats-Unis
paperback. Etat : Very Good. Connecting readers with great books since 1972! Used books may not include companion materials, and may have some shelf wear or limited writing. We ship orders daily and Customer Service is our top priority! N° de réf. du vendeur S_456298464
Quantité disponible : 1 disponible(s)
Vendeur : Better World Books: West, Reno, NV, Etats-Unis
Etat : Very Good. Former library copy. Pages intact with possible writing/highlighting. Binding strong with minor wear. Dust jackets/supplements may not be included. Includes library markings. Stock photo provided. Product includes identifying sticker. Better World Books: Buy Books. Do Good. N° de réf. du vendeur 53855000-75
Quantité disponible : 1 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 608 pages. 10.00x7.00x1.37 inches. This item is printed on demand. N° de réf. du vendeur zk1482359510
Quantité disponible : 1 disponible(s)