Articles liés à Python Machine Learning Case Studies: Five Case Studies...

Python Machine Learning Case Studies: Five Case Studies for the Data Scientist - Couverture souple

 
9781484228241: Python Machine Learning Case Studies: Five Case Studies for the Data Scientist

L'édition de cet ISBN n'est malheureusement plus disponible.

Synopsis

Chapter 1: Statistics and Probability
Chapter Goal: Introduction and hands on approach to central limit theorem, distributions, confidence intervals, statistical tests, ROC curves, plots, probabilities, permutations and combinations
No of pages: 70-80
Sub -Topics
1. Exploratory Data analysis
2. Probability Distributions
3. Concept of Permutations and Combinations
4. Statistical tests
5. Applications in the industry
6. Case study

Chapter 2: Regression
Chapter Goal: Introduction and hands on approach to the concept of regression, linear regression models, non linear regression models.
No of pages: 50-60
Sub - Topics
1. Concept of Regression
2. Linear regression
3. Polynomial order regression
4. Statistical tests
5. Applications in the industry
6. Case study
&
amp;amp;amp;amp;amp;amp;amp;amp;amp;lt;
Chapter 3: Time series models
Chapter Goal: Introduction and hands on approach to concepts of trends, cycles, seasonal variations, anomaly detection, exponential smoothing, rolling moving averages, ARIMA, ARMA, over fitting.
No of pages: 60-70
Sub - Topics:
1. Concept of trends, cycles, and seasonal variations
2. Time series decomposition
3. ARIMA, and ARMA models
4. Concept of over fitting
5. Statistical tests
6. Applications in the industry
7. Case study

Chapter 4: Classification and Clustering
Chapter Goal: Introduction and hands on approach to supervised, semi supervised and unsupervised models. Emphasis on Logistic regression, k-means, Support Vector Machines, Neural networks
No of pages: 80-90
Sub - Topics:
1. Concept of Classification and clustering
2. Deep
neur3. Support Vector Machines
4. Concept of Gradient descent
5. Statistical tests
6. Applications in the industry
7. Case study

Chapter 5: Ensemble methods
Chapter Goal: Introduction and hands on approach to Bagging, and Gradient Boosting
No of pages: 50-60
Sub - Topics:
1. Concept of ensemble methods
2. Concept of Bagging
3. Concept of Gradient Boosting
4. Statistical tests
5. Applications in the industry
6. Case study

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

(Aucun exemplaire disponible)

Chercher:



Créez une demande

Vous ne trouvez pas le livre que vous recherchez ? Nous allons poursuivre vos recherches. Si l'un de nos libraires l'ajoute aux offres sur AbeBooks, nous vous le ferons savoir !

Créez une demande

Autres éditions populaires du même titre

9781484228227: Python Machine Learning Case Studies: Five Case Studies for the Data Scientist

Edition présentée

ISBN 10 :  1484228227 ISBN 13 :  9781484228227
Editeur : Apress, 2017
Couverture souple