Articles liés à Building Computer Vision Applications Using Artificial...

Building Computer Vision Applications Using Artificial Neural Networks: With Step-by-Step Examples in OpenCV and TensorFlow with Python - Couverture souple

 
9781484258880: Building Computer Vision Applications Using Artificial Neural Networks: With Step-by-Step Examples in OpenCV and TensorFlow with Python

L'édition de cet ISBN n'est malheureusement plus disponible.

Synopsis

Section 1

1. Chapter 1: Prerequisite and Software Installation
1.1. Python and PIP
1.1.1. Installing Python and PIP on Ubuntu
1.1.2. Installing Python and PIP on Mac OS
1.1.3. Installing Python and PIP on CentOS 7
1.1.4. Installing Python and PIP on Windows
1.2. Virtualenv
1.2.1. Setup and activate virtualenv
1.3. Tensorflow
1.3.1. Installing Tensorflow
1.4. PyCharm IDE
1.4.1. Installing PyCharm
1.4.2. Configuring PyCharm to use virtualenv
1.5. OpenCV
1.5.1. Installing OpenCV
1.5.2. Installing OpenCV4 with Python bindings
1.6. Additional libraries
1.6.1. SciPy
1.6.2. Matplotlib

Chapter 2: Core Concepts of Image and Video Processing
1.7. Image processing
1.7.1. Image basics
1.7.2. Pixel
1.7.3. Pixel color
1.7.3.1. Grayscale
1.7.3.2. Color
1.7.4. Coordinate system
1.7.5. Python and OpenCV code to manipulate images
1.7.6. Program: loading, exploring and showing image
1.7.7. Program: OpenCV code to access and manipulate pixels
1.8. Drawing
1.8.1. Drawing a line on an image
1.8.2. Drawing a rectangle on an image
1.8.3. Drawing a circle on an image
1.9. Chapter summary
1.10.
2. Chapter 3: Techniques of Image Processing
2.1. Transformation
2.1.1. Resizing
2.1.2. Translation
2.1.3. Rotation
2.1.4. Flipping
2.1.5. Cropping
2.2. Image arithmetic and bitwise operations
2.2.1. Addition
2.2.2. Subtraction
2.2.3. Bitwise operations
2.2.3.1. OR
2.2.3.2. AND
2.2.3.3. NOT
2.2.3.4. XOR
2.3. Masking
2.4. Splitting and merging channels
2.5. Smoothing and blurring
2.6. Thresholding
2.7. Gradient and edge detection
2.8. Contours
2.9. Chapter summary

Section 2
3. Chapter 4: Building Artificial Intelligence System For Computer Vision
3.1. Image processing pipeline
3.2. Feature extraction
3.2.1. Color histogram
3.2.2. GLCM
3.2.3. HOG
3.2.4. LBP
3.3. Feature selection
3.3.1. Filter
3.3.2. Wrapper
3.3.3. Embedded
3.3.4. Regularization
3.4. Chapter summary

4. Chapter 5: Artificial Neural Network for Computer Vision
4.1. Introduction to ANN
4.1.1. ANN topology
4.1.2. Hyperparameters
4.1.3. ANN model training using TensorFlow
4.1.4. Model evaluation
4.1.5. Model deployment
4.1.6. Use of trained model
4.2. Introduction to Convolution Neural Network (CNN)
4.2.1. Core concepts of CNN
4.2.2. Creating training set for CNN
4.2.3. Training CNN model using TensorFlow 
4.2.4. Inspecting CNN model and evaluating model fitness
4.2.5. Using and deployment of trained model
4.3. Introduction to Recurrent Neural Network (RNN) and long short-term Memory (LSTM)
4.3.1. Core concepts of RNN and LSTM
4.3.2. Creating training set for LSTM
4.3.3. LSTM model training using TensorFlow
4.3.4. Inspecting LSTM model and assessing fitness
4.3.5. Deploying LSTM models in practice

Section 3
5. Chapter 6: Practical Example 1- Object Detection in Images
6. Chapter 7: Practical Example 2- Object Tracking in Videos
7. Chapter 8: Practical Example 3- Facial Detection
8. Chapter 9: Industrial Application - Realtime Defect Detection in Industrial Manufacturing

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

(Aucun exemplaire disponible)

Chercher:



Créez une demande

Vous ne trouvez pas le livre que vous recherchez ? Nous allons poursuivre vos recherches. Si l'un de nos libraires l'ajoute aux offres sur AbeBooks, nous vous le ferons savoir !

Créez une demande

Autres éditions populaires du même titre

9781484258866: Building Computer Vision Applications Using Artificial Neural Networks: With Step-by-Step Examples in OpenCV and TensorFlow with Python

Edition présentée

ISBN 10 :  148425886X ISBN 13 :  9781484258866
Editeur : Apress, 2020
Couverture souple