Articles liés à Modern Data Mining Algorithms in C++ and CUDA C: Recent...

Modern Data Mining Algorithms in C++ and CUDA C: Recent Developments in Feature Extraction and Selection Algorithms for Data Science - Couverture souple

 
9781484259870: Modern Data Mining Algorithms in C++ and CUDA C: Recent Developments in Feature Extraction and Selection Algorithms for Data Science

Synopsis

Discover a variety of data-mining algorithms that are useful for selecting small sets of important features from among unwieldy masses of candidates, or extracting useful features from measured variables.

As a serious data miner you will often be faced with thousands of candidate features for your prediction or classification application, with most of the features being of little or no value. You’ll know that many of these features may be useful only in combination with certain other features while being practically worthless alone or in combination with most others. Some features may have enormous predictive power, but only within a small, specialized area of the feature space. The problems that plague modern data miners are endless. This book helps you solve this problem by presenting modern feature selection techniques and the code to implement them. Some of these techniques are:

  • Forward selection component analysis
  • Local feature selection
  • Linking features and a target with a hidden Markov model
  • Improvements on traditional stepwise selection
  • Nominal-to-ordinal conversion

All algorithms are intuitively justified and supported by the relevant equations and explanatory material. The author also presents and explains complete, highly commented source code. 

The example code is in C++ and CUDA C but Python or other code can be substituted; the algorithm is important, not the code that's used to write it.  

What You Will Learn

  • Combine principal component analysis with forward and backward stepwise selection to identify a compact subset of a large collection of variables that captures the maximum possible variation within the entire set.
  • Identify features that may have predictive power over only a small subset of the feature domain. Such features can be profitably used by modern predictive models but may be missed by other feature selection methods.
  • Find an underlying hidden Markov model that controls the distributions of feature variables and the target simultaneously. The memory inherent in this method is especially valuable in high-noise applications such as prediction of financial markets.
  • Improve traditional stepwise selection in three ways: examine a collection of 'best-so-far' feature sets; test candidate features for inclusion with cross validation to automatically and effectively limit model complexity; and at each step estimate the probability that our results so far could be just the product of random good luck. We also estimate the probability that the improvement obtained by adding a new variable could have been just good luck. Take a potentially valuable nominal variable (a category or class membership) that is unsuitable for input to a prediction model, and assign to each category a sensible numeric value that can be used as a model input.

 

Who This Book Is For 

Intermediate to advanced data science programmers and analysts.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Timothy Masters has a PhD in statistics and is an experienced programmer. His dissertation was in image analysis. His career moved in the direction of signal processing, and for the last 25 years he's been involved in the development of automated trading systems in various financial markets.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Acheter D'occasion

état :  Assez bon
The book has been read, but is...
Afficher cet article
EUR 42,14

Autre devise

EUR 5,22 expédition depuis Royaume-Uni vers France

Destinations, frais et délais

Autres éditions populaires du même titre

9781484259894: Modern Data Mining Algorithms in C++ and CUDA C: Recent Developments in Feature Extraction and Selection Algorithms for Data Science

Edition présentée

ISBN 10 :  1484259890 ISBN 13 :  9781484259894
Editeur : Apress, 2020
Couverture souple

Résultats de recherche pour Modern Data Mining Algorithms in C++ and CUDA C: Recent...

Edition internationale
Edition internationale

Masters
Edité par Apress, 2020
ISBN 10 : 1484259874 ISBN 13 : 9781484259870
Neuf Couverture souple
Edition internationale

Vendeur : Romtrade Corp., STERLING HEIGHTS, MI, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Brand New. Soft Cover International Edition. Different ISBN and Cover Image. Priced lower than the standard editions which is usually intended to make them more affordable for students abroad. The core content of the book is generally the same as the standard edition. The country selling restrictions may be printed on the book but is no problem for the self-use. This Item maybe shipped from US or any other country as we have multiple locations worldwide. N° de réf. du vendeur ABNR-208187

Contacter le vendeur

Acheter neuf

EUR 27,74
Autre devise
Frais de port : Gratuit
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Masters, Timothy
Edité par Apress, 2020
ISBN 10 : 1484259874 ISBN 13 : 9781484259870
Ancien ou d'occasion Paperback

Vendeur : WorldofBooks, Goring-By-Sea, WS, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : Very Good. The book has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged. N° de réf. du vendeur GOR014205611

Contacter le vendeur

Acheter D'occasion

EUR 42,14
Autre devise
Frais de port : EUR 5,22
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Masters, Timothy
Edité par Apress 6/30/2020, 2020
ISBN 10 : 1484259874 ISBN 13 : 9781484259870
Neuf Paperback or Softback

Vendeur : BargainBookStores, Grand Rapids, MI, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback or Softback. Etat : New. Modern Data Mining Algorithms in C++ and Cuda C: Recent Developments in Feature Extraction and Selection Algorithms for Data Science 0.93. Book. N° de réf. du vendeur BBS-9781484259870

Contacter le vendeur

Acheter neuf

EUR 44,48
Autre devise
Frais de port : EUR 10,65
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 5 disponible(s)

Ajouter au panier

Image d'archives

Masters, Timothy
Edité par Apress, 2020
ISBN 10 : 1484259874 ISBN 13 : 9781484259870
Neuf Couverture souple

Vendeur : California Books, Miami, FL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur I-9781484259870

Contacter le vendeur

Acheter neuf

EUR 50,90
Autre devise
Frais de port : EUR 6,82
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Masters, Timothy
Edité par Apress 2020-06, 2020
ISBN 10 : 1484259874 ISBN 13 : 9781484259870
Neuf PF

Vendeur : Chiron Media, Wallingford, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

PF. Etat : New. N° de réf. du vendeur 6666-IUK-9781484259870

Contacter le vendeur

Acheter neuf

EUR 48,26
Autre devise
Frais de port : EUR 11,02
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 10 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Timothy Masters
Edité par Apress, 2020
ISBN 10 : 1484259874 ISBN 13 : 9781484259870
Neuf Couverture souple
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. A novel expert-driven data-mining approach to algorithms in C++ and CUDA C&nbspAuthor has been developing and using algorithms for over 20 yearsData mining is an important topic in big data and data science. N° de réf. du vendeur 362611029

Contacter le vendeur

Acheter neuf

EUR 56,35
Autre devise
Frais de port : EUR 9,70
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Masters, Timothy
Edité par Apress, 2020
ISBN 10 : 1484259874 ISBN 13 : 9781484259870
Neuf Couverture souple

Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. In English. N° de réf. du vendeur ria9781484259870_new

Contacter le vendeur

Acheter neuf

EUR 64,64
Autre devise
Frais de port : EUR 4,63
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Timothy Masters
Edité par APress, 2020
ISBN 10 : 1484259874 ISBN 13 : 9781484259870
Neuf Paperback / softback
impression à la demande

Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback / softback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 463. N° de réf. du vendeur C9781484259870

Contacter le vendeur

Acheter neuf

EUR 67,10
Autre devise
Frais de port : EUR 6,71
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Masters, Timothy
Edité par Apress, 2020
ISBN 10 : 1484259874 ISBN 13 : 9781484259870
Neuf Paperback

Vendeur : Revaluation Books, Exeter, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : Brand New. 237 pages. 10.00x7.00x0.50 inches. In Stock. N° de réf. du vendeur x-1484259874

Contacter le vendeur

Acheter neuf

EUR 66,66
Autre devise
Frais de port : EUR 11,61
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Timothy Masters
Edité par Apress Jun 2020, 2020
ISBN 10 : 1484259874 ISBN 13 : 9781484259870
Neuf Taschenbuch
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Discover a variety of data-mining algorithms that are useful for selecting small sets of important features from among unwieldy masses of candidates, or extracting useful features from measured variables. As a serious data miner you will often be faced with thousands of candidate features for your prediction or classification application, with most of the features being of little or no value. You'll know that many of these features may be useful only in combination with certain other features while being practically worthless alone or in combination with most others. Some features may have enormous predictive power, but only within a small, specialized area of the feature space. The problems that plague modern data miners are endless. This book helps you solve this problem by presenting modern feature selection techniques and the code to implement them. Some of these techniques are:Forward selection component analysis Local feature selectionLinking features and a target with a hidden Markov modelImprovements on traditional stepwise selectionNominal-to-ordinal conversion All algorithms are intuitively justified and supported by the relevant equations and explanatory material. The author also presents and explains complete, highly commented source code.The example code is in C++ and CUDA C but Python or other code can be substituted; the algorithm is important, not the code that's used to write it.What You Will Learn Combine principal component analysis with forward and backward stepwise selection to identify a compact subset of a large collection of variables that captures the maximum possible variation within the entire set. Identify features that may have predictive power over only a small subset of the feature domain. Such features can be profitably used by modern predictive models but may be missed by other feature selection methods. Find an underlying hidden Markov model that controls the distributions of feature variables and the target simultaneously. The memory inherent in this method is especially valuable in high-noise applications such as prediction of financial markets.Improve traditional stepwise selection in three ways: examine a collection of 'best-so-far' feature sets; test candidate features for inclusion with cross validation to automatically and effectively limit model complexity; and at each step estimate the probability that our results so far could be just the product of random good luck. We also estimate the probability that the improvement obtained by adding a new variable could have been just good luck. Take a potentially valuable nominal variable (a category or class membership) that is unsuitable for input to a prediction model, and assign to each category a sensible numeric value that can be used as a model input. Who This Book Is ForIntermediate to advanced data science programmers and analysts. 240 pp. Englisch. N° de réf. du vendeur 9781484259870

Contacter le vendeur

Acheter neuf

EUR 69,54
Autre devise
Frais de port : EUR 11
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

There are 8 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre