Articles liés à Applied Neural Networks with TensorFlow 2: API Oriented...

Applied Neural Networks with TensorFlow 2: API Oriented Deep Learning with Python - Couverture souple

 
9781484265123: Applied Neural Networks with TensorFlow 2: API Oriented Deep Learning with Python

Synopsis

Implement deep learning applications using TensorFlow while learning the "why" through in-depth conceptual explanations.
You'll start by learning what deep learning offers over other machine learning models. Then familiarize yourself with several technologies used to create deep learning models. While some of these technologies are complementary, such as Pandas, Scikit-Learn, and Numpy--others are competitors, such as PyTorch, Caffe, and Theano. This book clarifies the positions of deep learning and Tensorflow among their peers.
You'll then work on supervised deep learning models to gain applied experience with the technology. A single-layer of multiple perceptrons will be used to build a shallow neural network before turning it into a deep neural network. After showing the structure of the ANNs, a real-life application will be created with Tensorflow 2.0 Keras API. Next, you'll work on data augmentation and batch normalization methods. Then, the Fashion MNIST dataset will be used to train a CNN. CIFAR10 and Imagenet pre-trained models will be loaded to create already advanced CNNs.
Finally, move into theoretical applications and unsupervised learning with auto-encoders and reinforcement learning with tf-agent models. With this book, you'll delve into applied deep learning practical functions and build a wealth of knowledge about how to use TensorFlow effectively.
What You'll Learn

  • Compare competing technologies and see why TensorFlow is more popular
  • Generate text, image, or sound with GANs
  • Predict the rating or preference a user will give to an item
  • Sequence data with recurrent neural networks
Who This Book Is For
Data scientists and programmers new to the fields of deep learning and machine learning APIs.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Orhan Gazi Yalçın is a joint Ph.D. candidate at the University of Bologna & the Polytechnic University of Madrid. After completing his double major in business and law, he began his career in Istanbul, working for a city law firm, Allen & Overy, and a global entrepreneurship network, Endeavor. During his academic and professional career, he taught himself programming and excelled in machine learning. He currently conducts research on hotly debated law & AI topics such as explainable artificial intelligence and the right to explanation by combining his technical and legal skills. In his spare time, he enjoys free-diving, swimming, exercising as well as discovering new countries, cultures, and cuisines.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Acheter D'occasion

état :  Comme neuf
Unread book in perfect condition...
Afficher cet article
EUR 39,35

Autre devise

EUR 16,97 expédition depuis Etats-Unis vers France

Destinations, frais et délais

Acheter neuf

Afficher cet article
EUR 33,74

Autre devise

EUR 16,97 expédition depuis Etats-Unis vers France

Destinations, frais et délais

Autres éditions populaires du même titre

9781484276945: Applied Neural Networks with TensorFlow 2: API Oriented Deep Learning with Python

Edition présentée

ISBN 10 :  1484276949 ISBN 13 :  9781484276945
Couverture souple

Résultats de recherche pour Applied Neural Networks with TensorFlow 2: API Oriented...

Image fournie par le vendeur

Yalçin, Orhan Gazi
Edité par Apress, 2020
ISBN 10 : 1484265122 ISBN 13 : 9781484265123
Neuf Couverture souple

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 42412718-n

Contacter le vendeur

Acheter neuf

EUR 33,74
Autre devise
Frais de port : EUR 16,97
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Yalçin, Orhan Gazi
Edité par Apress, 2020
ISBN 10 : 1484265122 ISBN 13 : 9781484265123
Ancien ou d'occasion Couverture souple

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 42412718

Contacter le vendeur

Acheter D'occasion

EUR 39,35
Autre devise
Frais de port : EUR 16,97
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Orhan Gazi Yalçin
Edité par Apress, 2020
ISBN 10 : 1484265122 ISBN 13 : 9781484265123
Neuf Couverture souple

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 401668628

Contacter le vendeur

Acheter neuf

EUR 48,37
Autre devise
Frais de port : EUR 9,70
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Yalçin, Orhan Gazi
Edité par Apress, 2020
ISBN 10 : 1484265122 ISBN 13 : 9781484265123
Ancien ou d'occasion Couverture souple

Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 42412718

Contacter le vendeur

Acheter D'occasion

EUR 46,12
Autre devise
Frais de port : EUR 17,38
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Yalçin, Orhan
Edité par Apress, 2020
ISBN 10 : 1484265122 ISBN 13 : 9781484265123
Neuf Paperback

Vendeur : Revaluation Books, Exeter, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : Brand New. 295 pages. 9.00x6.00x0.70 inches. In Stock. N° de réf. du vendeur x-1484265122

Contacter le vendeur

Acheter neuf

EUR 53,54
Autre devise
Frais de port : EUR 11,59
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Orhan Gazi Yalç¿n
Edité par Apress Nov 2020, 2020
ISBN 10 : 1484265122 ISBN 13 : 9781484265123
Neuf Taschenbuch
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Implement deep learning applications using TensorFlow while learning the 'why' through in-depth conceptual explanations. You'll start by learning what deep learning offers over other machine learning models. Then familiarize yourself with several technologies used to create deep learning models. While some of these technologies are complementary, such as Pandas, Scikit-Learn, and Numpy-others are competitors, such as PyTorch, Caffe, and Theano. This book clarifies the positions of deep learning and Tensorflow among their peers.You'll then work on supervised deep learning models to gain applied experience with the technology. A single-layer of multiple perceptrons will be used to build a shallow neural network before turning it into a deep neural network. After showing the structure of the ANNs, a real-life application will be created with Tensorflow 2.0 Keras API. Next, you'll work on data augmentation and batch normalization methods. Then, the Fashion MNIST dataset will be used to train a CNN. CIFAR10 and Imagenet pre-trained models will be loaded to create already advanced CNNs. Finally, move into theoretical applications and unsupervised learning with auto-encoders and reinforcement learning with tf-agent models. With this book, you'll delve into applied deep learning practical functions and build a wealth of knowledge about how to use TensorFlow effectively. What You'll Learn Compare competing technologies and see why TensorFlow is more popularGenerate text, image, or sound with GANsPredict the rating or preference a user will give to an itemSequence data with recurrent neural networks Who This Book Is For Data scientists and programmers new to the fields of deep learning and machine learning APIs. 316 pp. Englisch. N° de réf. du vendeur 9781484265123

Contacter le vendeur

Acheter neuf

EUR 58,84
Autre devise
Frais de port : EUR 11
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Orhan Gazi Yalç¿n
Edité par Apress, Apress, 2020
ISBN 10 : 1484265122 ISBN 13 : 9781484265123
Neuf Taschenbuch
impression à la demande

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Implement deep learning applications using TensorFlow while learning the 'why' through in-depth conceptual explanations. You'll start by learning what deep learning offers over other machine learning models. Then familiarize yourself with several technologies used to create deep learning models. While some of these technologies are complementary, such as Pandas, Scikit-Learn, and Numpy-others are competitors, such as PyTorch, Caffe, and Theano. This book clarifies the positions of deep learning and Tensorflow among their peers.You'll then work on supervised deep learning models to gain applied experience with the technology. A single-layer of multiple perceptrons will be used to build a shallow neural network before turning it into a deep neural network. After showing the structure of the ANNs, a real-life application will be created with Tensorflow 2.0 Keras API. Next, you'll work on data augmentation and batch normalization methods. Then, the Fashion MNIST dataset will be used to train a CNN. CIFAR10 and Imagenet pre-trained models will be loaded to create already advanced CNNs. Finally, move into theoretical applications and unsupervised learning with auto-encoders and reinforcement learning with tf-agent models. With this book, you'll delve into applied deep learning practical functions and build a wealth of knowledge about how to use TensorFlow effectively. What You'll Learn Compare competing technologies and see why TensorFlow is more popularGenerate text, image, or sound with GANsPredict the rating or preference a user will give to an itemSequence data with recurrent neural networks Who This Book Is For Data scientists and programmers new to the fields of deep learning and machine learning APIs. N° de réf. du vendeur 9781484265123

Contacter le vendeur

Acheter neuf

EUR 59,71
Autre devise
Frais de port : EUR 10,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Yalç?n, Orhan Gazi
Edité par Apress, 2020
ISBN 10 : 1484265122 ISBN 13 : 9781484265123
Neuf Couverture souple

Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. In. N° de réf. du vendeur ria9781484265123_new

Contacter le vendeur

Acheter neuf

EUR 66,86
Autre devise
Frais de port : EUR 4,62
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Orhan Gazi Yalç¿n
Edité par Apress, Apress Nov 2020, 2020
ISBN 10 : 1484265122 ISBN 13 : 9781484265123
Neuf Taschenbuch

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Neuware -Implement deep learning applications using TensorFlow while learning the ¿why¿ through in-depth conceptual explanations.APress in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 316 pp. Englisch. N° de réf. du vendeur 9781484265123

Contacter le vendeur

Acheter neuf

EUR 58,84
Autre devise
Frais de port : EUR 15
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Yalçin, Orhan Gazi
Edité par Apress, 2020
ISBN 10 : 1484265122 ISBN 13 : 9781484265123
Neuf Couverture souple

Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 42412718-n

Contacter le vendeur

Acheter neuf

EUR 61,88
Autre devise
Frais de port : EUR 17,38
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

There are 5 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre