Articles liés à TensorFlow 2.x in the Colaboratory Cloud: An Introduction...

TensorFlow 2.x in the Colaboratory Cloud: An Introduction to Deep Learning on Google’s Cloud Service - Couverture souple

 
9781484266489: TensorFlow 2.x in the Colaboratory Cloud: An Introduction to Deep Learning on Google’s Cloud Service

Synopsis

Use TensorFlow 2.x with Google's Colaboratory (Colab) product that offers a free cloud service for Python programmers. Colab is especially well suited as a platform for TensorFlow 2.x deep learning applications. You will learn Colab's default install of the most current TensorFlow 2.x along with Colab's easy access to on-demand GPU hardware acceleration in the cloud for fast execution of deep learning models. This book offers you the opportunity to grasp deep learning in an applied manner with the only requirement being an Internet connection. Everything else--Python, TensorFlow 2.x, GPU support, and Jupyter Notebooks--is provided and ready to go from Colab.
The book begins with an introduction to TensorFlow 2.x and the Google Colab cloud service. You will learn how to provision a workspace on Google Colab and build a simple neural network application. From there you will progress into TensorFlow datasets and building input pipelines in support of modeling and testing. You will find coverage of deep learning classification and regression, with clear code examples showing how to perform each of those functions. Advanced topics covered in the book include convolutional neural networks and recurrent neural networks.

This book contains all the applied math and programming you need to master the content. Examples range from simple to relatively complex when necessary to ensure acquisition of appropriate deep learning concepts and constructs. Examples are carefully explained, concise, accurate, and complete to perfectly complement deep learning skill development. Care is taken to walk you through the foundational principles of deep learning through clear examples written in Python that you can try out and experiment with using Google Colab from the comfort of your own home or office.

What You Will Learn
  • Be familiar with the basic concepts and constructs of applied deep learning
  • Create machine learning models with clean and reliable Python code
  • Work with datasets common to deep learning applications
  • Prepare data for TensorFlow consumption
  • Take advantage of Google Colab's built-in support for deep learning
  • Execute deep learning experiments using a variety of neural network models
  • Be able to mount Google Colab directly to your Google Drive account
  • Visualize training versus test performance to see model fit

Who This Book Is For
Readers who want to learn the highly popular TensorFlow 2.x deep learning platform, those who wish to master deep learning fundamentals that are sometimes skipped over in the rush to be productive, and those looking to build competency with a modern cloud service tool such as Google Colab

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Dr. David Paper is a full professor at Utah State University (USU) in the Management Information Systems department. He has over 30 years of higher education teaching experience. At USU, he has over 26 years teaching in the classroom and distance education over satellite. Dr. Paper has taught a variety of classes at the undergraduate, graduate, and doctorate levels, but he specializes in technology education. He has competency in several programming languages, but his focus is currently on deep learning (Python) and database programming (PyMongo). Dr. Paper has published three technical books for industry professionals, including Web Programming for Business: PHP Object-Oriented Programming with Oracle, Data Science Fundamentals for Python and MongoDB (Apress), and Hands-on Scikit-Learn for Machine Learning Applications: Data Science Fundamentals with Python (Apress). He has authored more than 100 academic publications. Besides growing up in family businesses, Dr. Paper has worked for Texas Instruments, DLS, Inc., and the Phoenix Small Business Administration. He has performed IS consulting work for IBM, AT&T, Octel, Utah Department of Transportation, and the Space Dynamics Laboratory.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Acheter D'occasion

état :  Comme neuf
Most items will be dispatched the...
Afficher cet article
EUR 24,39

Autre devise

EUR 6,52 expédition depuis Royaume-Uni vers France

Destinations, frais et délais

Acheter neuf

Afficher cet article
EUR 40,53

Autre devise

EUR 2,31 expédition depuis Royaume-Uni vers France

Destinations, frais et délais

Résultats de recherche pour TensorFlow 2.x in the Colaboratory Cloud: An Introduction...

Image fournie par le vendeur

Paper, David
Edité par Apress, 2021
ISBN 10 : 148426648X ISBN 13 : 9781484266489
Ancien ou d'occasion Couverture souple

Vendeur : WeBuyBooks, Rossendale, LANCS, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : Like New. Most items will be dispatched the same or the next working day. An apparently unread copy in perfect condition. Dust cover is intact with no nicks or tears. Spine has no signs of creasing. Pages are clean and not marred by notes or folds of any kind. N° de réf. du vendeur wbs9420562847

Contacter le vendeur

Acheter D'occasion

EUR 24,39
Autre devise
Frais de port : EUR 6,52
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

David Paper
Edité par APress, US, 2021
ISBN 10 : 148426648X ISBN 13 : 9781484266489
Neuf Paperback Edition originale

Vendeur : Rarewaves.com UK, London, Royaume-Uni

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : New. 1st ed. Use TensorFlow 2.x with Google's Colaboratory (Colab) product that offers a free cloud service for Python programmers. Colab is especially well suited as a platform for TensorFlow 2.x deep learning applications. You will learn Colab's default install of the most current TensorFlow 2.x along with Colab's easy access to on-demand GPU hardware acceleration in the cloud for fast execution of deep learning models. This book offers you the opportunity to grasp deep learning in an applied manner with the only requirement being an Internet connection. Everything else-Python, TensorFlow 2.x, GPU support, and Jupyter Notebooks-is provided and ready to go from Colab.  The book begins with an introduction to TensorFlow 2.x and the Google Colab cloud service. You will learn how to provision a workspace on Google Colab and build a simple neural network application. From there you will progress into TensorFlow datasets and building input pipelines in support of modeling and testing. You will find coverage of deep learning classification and regression, with clear code examples showing how to perform each of those functions. Advanced topics covered in the book include convolutional neural networks and recurrent neural networks. This book contains all the applied math and programming you need to master the content. Examples range from simple to relatively complex when necessary to ensure acquisition of appropriate deep learning concepts and constructs. Examples are carefully explained, concise, accurate, and complete to perfectly complement deep learning skill development. Care is taken to walk you through the foundational principles of deep learning through clear examples written in Python that you can try out and experiment with using Google Colab from the comfort of your own home or office.What You Will LearnBe familiar with the basic concepts and constructs of applied deep learningCreate machine learning models with clean and reliable Python codeWork with datasets common to deep learning applicationsPrepare data for TensorFlow consumptionTake advantage of Google Colab's built-in support for deep learningExecute deep learning experiments using a variety of neural network modelsBe able to mount Google Colab directly to your Google Drive accountVisualize training versus test performance to see model fitWho This Book Is ForReaders who want to learn the highly popular TensorFlow 2.x deep learning platform, those who wish to master deep learning fundamentals that are sometimes skipped over in the rush to be productive, and those looking to build competency with a modern cloud service tool such as Google Colab. N° de réf. du vendeur LU-9781484266489

Contacter le vendeur

Acheter neuf

EUR 40,53
Autre devise
Frais de port : EUR 2,31
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

David Paper
Edité par APress, US, 2021
ISBN 10 : 148426648X ISBN 13 : 9781484266489
Neuf Paperback Edition originale

Vendeur : Rarewaves.com USA, London, LONDO, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : New. 1st ed. Use TensorFlow 2.x with Google's Colaboratory (Colab) product that offers a free cloud service for Python programmers. Colab is especially well suited as a platform for TensorFlow 2.x deep learning applications. You will learn Colab's default install of the most current TensorFlow 2.x along with Colab's easy access to on-demand GPU hardware acceleration in the cloud for fast execution of deep learning models. This book offers you the opportunity to grasp deep learning in an applied manner with the only requirement being an Internet connection. Everything else-Python, TensorFlow 2.x, GPU support, and Jupyter Notebooks-is provided and ready to go from Colab.  The book begins with an introduction to TensorFlow 2.x and the Google Colab cloud service. You will learn how to provision a workspace on Google Colab and build a simple neural network application. From there you will progress into TensorFlow datasets and building input pipelines in support of modeling and testing. You will find coverage of deep learning classification and regression, with clear code examples showing how to perform each of those functions. Advanced topics covered in the book include convolutional neural networks and recurrent neural networks. This book contains all the applied math and programming you need to master the content. Examples range from simple to relatively complex when necessary to ensure acquisition of appropriate deep learning concepts and constructs. Examples are carefully explained, concise, accurate, and complete to perfectly complement deep learning skill development. Care is taken to walk you through the foundational principles of deep learning through clear examples written in Python that you can try out and experiment with using Google Colab from the comfort of your own home or office.What You Will LearnBe familiar with the basic concepts and constructs of applied deep learningCreate machine learning models with clean and reliable Python codeWork with datasets common to deep learning applicationsPrepare data for TensorFlow consumptionTake advantage of Google Colab's built-in support for deep learningExecute deep learning experiments using a variety of neural network modelsBe able to mount Google Colab directly to your Google Drive accountVisualize training versus test performance to see model fitWho This Book Is ForReaders who want to learn the highly popular TensorFlow 2.x deep learning platform, those who wish to master deep learning fundamentals that are sometimes skipped over in the rush to be productive, and those looking to build competency with a modern cloud service tool such as Google Colab. N° de réf. du vendeur LU-9781484266489

Contacter le vendeur

Acheter neuf

EUR 44,66
Autre devise
Frais de port : EUR 2,31
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Paper, David
Edité par Apress 1/14/2021, 2021
ISBN 10 : 148426648X ISBN 13 : 9781484266489
Neuf Paperback or Softback

Vendeur : BargainBookStores, Grand Rapids, MI, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback or Softback. Etat : New. Tensorflow 2.X in the Colaboratory Cloud: An Introduction to Deep Learning on Google's Cloud Service 1.12. Book. N° de réf. du vendeur BBS-9781484266489

Contacter le vendeur

Acheter neuf

EUR 36,51
Autre devise
Frais de port : EUR 10,75
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 5 disponible(s)

Ajouter au panier

Image d'archives

Paper, David
Edité par Apress, 2021
ISBN 10 : 148426648X ISBN 13 : 9781484266489
Neuf Couverture souple

Vendeur : California Books, Miami, FL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur I-9781484266489

Contacter le vendeur

Acheter neuf

EUR 40,75
Autre devise
Frais de port : EUR 6,88
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

David Paper
Edité par APress, 2021
ISBN 10 : 148426648X ISBN 13 : 9781484266489
Neuf Paperback / softback

Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback / softback. Etat : New. New copy - Usually dispatched within 2 working days. 550. N° de réf. du vendeur B9781484266489

Contacter le vendeur

Acheter neuf

EUR 40,51
Autre devise
Frais de port : EUR 7,27
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

David Paper
Edité par Apress, 2021
ISBN 10 : 148426648X ISBN 13 : 9781484266489
Neuf Couverture souple

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 419643154

Contacter le vendeur

Acheter neuf

EUR 39,06
Autre devise
Frais de port : EUR 9,70
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Paper, David
Edité par Apress, 2021
ISBN 10 : 148426648X ISBN 13 : 9781484266489
Neuf Couverture souple

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 43140428-n

Contacter le vendeur

Acheter neuf

EUR 34,16
Autre devise
Frais de port : EUR 17,19
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Paper, David
Edité par Apress, 2021
ISBN 10 : 148426648X ISBN 13 : 9781484266489
Ancien ou d'occasion Couverture souple

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 43140428

Contacter le vendeur

Acheter D'occasion

EUR 37,86
Autre devise
Frais de port : EUR 17,19
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Paper, David
Edité par Apress, 2021
ISBN 10 : 148426648X ISBN 13 : 9781484266489
Neuf Couverture souple

Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 43140428-n

Contacter le vendeur

Acheter neuf

EUR 40,50
Autre devise
Frais de port : EUR 17,30
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

There are 12 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre