Articles liés à Data Science Solutions with Python: Fast and Scalable...

Data Science Solutions with Python: Fast and Scalable Models Using Keras, PySpark MLlib, H2O, XGBoost, and Scikit-Learn - Couverture souple

 
9781484277614: Data Science Solutions with Python: Fast and Scalable Models Using Keras, PySpark MLlib, H2O, XGBoost, and Scikit-Learn

Synopsis

Apply supervised and unsupervised learning to solve practical and real-world big data problems. This book teaches you how to engineer features, optimize hyperparameters, train and test models, develop pipelines, and automate the machine learning (ML) process.
The book covers an in-memory, distributed cluster computing framework known as PySpark, machine learning framework platforms known as scikit-learn, PySpark MLlib, H2O, and XGBoost, and a deep learning (DL) framework known as Keras.

The book starts off presenting supervised and unsupervised ML and DL models, and then it examines big data frameworks along with ML and DL frameworks. Author Tshepo Chris Nokeri considers a parametric model known as the Generalized Linear Model and a survival regression model known as the Cox Proportional Hazards model along with Accelerated Failure Time (AFT). Also presented is a binary classification model (logistic regression) and an ensemble model (Gradient Boosted Trees). The book introduces DL and an artificial neural network known as the Multilayer Perceptron (MLP) classifier. A way of performing cluster analysis using the K-Means model is covered. Dimension reduction techniques such as Principal Components Analysis and Linear Discriminant Analysis are explored. And automated machine learning is unpacked.

This book is for intermediate-level data scientists and machine learning engineers who want to learn how to apply key big data frameworks and ML and DL frameworks. You will need prior knowledge of the basics of statistics, Python programming, probability theories, and predictive analytics.

What You Will Learn
  • Understand widespread supervised and unsupervised learning, including key dimension reduction techniques
  • Know the big data analytics layers such as data visualization, advanced statistics, predictive analytics, machine learning, and deep learning
  • Integrate big data frameworks with a hybrid of machine learning frameworks and deep learning frameworks
  • Design, build, test, and validate skilled machine models and deep learning models
  • Optimize model performance using data transformation, regularization, outlier remedying, hyperparameter optimization, and data split ratio alteration

Who This Book Is For
Data scientists and machine learning engineers with basic knowledge and understanding of Python programming, probability theories, and predictive analytics

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Tshepo Chris Nokeri harnesses advanced analytics and artificial intelligence to foster innovation and optimize business performance. In his functional work, he has delivered complex solutions to companies in the mining, petroleum, and manufacturing industries. He initially completed a bachelor's degree in information management. Afterward, he graduated with an Honours degree in business science at the University of the Witwatersrand on a TATA Prestigious Scholarship and a Wits Postgraduate Merit Award. They unanimously awarded him the Oxford University Press Prize.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Acheter D'occasion

état :  Comme neuf
Unread book in perfect condition...
Afficher cet article
EUR 23,85

Autre devise

EUR 17 expédition depuis Etats-Unis vers France

Destinations, frais et délais

Acheter neuf

Afficher cet article
EUR 35,77

Autre devise

EUR 4,56 expédition depuis Royaume-Uni vers France

Destinations, frais et délais

Résultats de recherche pour Data Science Solutions with Python: Fast and Scalable...

Image d'archives

Nokeri, Tshepo Chris
Edité par Apress, 2021
ISBN 10 : 1484277619 ISBN 13 : 9781484277614
Neuf Couverture souple

Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. In. N° de réf. du vendeur ria9781484277614_new

Contacter le vendeur

Acheter neuf

EUR 35,77
Autre devise
Frais de port : EUR 4,56
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Nokeri, Tshepo Chris
Edité par Apress, 2021
ISBN 10 : 1484277619 ISBN 13 : 9781484277614
Ancien ou d'occasion Couverture souple

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 43689087

Contacter le vendeur

Acheter D'occasion

EUR 23,85
Autre devise
Frais de port : EUR 17
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 5 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Nokeri, Tshepo Chris
Edité par Springer, Berlin|Apress, 2022
ISBN 10 : 1484277619 ISBN 13 : 9781484277614
Neuf Couverture souple
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Intermediate-Advanced user levelApply supervised and unsupervised learning to solve practical and real-world big data problems. This book teaches you how to engineer features, optimize hyperparameters, train and test models, develop pipelines, and a. N° de réf. du vendeur 501191693

Contacter le vendeur

Acheter neuf

EUR 32,41
Autre devise
Frais de port : EUR 9,70
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Nokeri, Tshepo Chris
Edité par Apress, 2021
ISBN 10 : 1484277619 ISBN 13 : 9781484277614
Neuf Couverture souple

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 43689087-n

Contacter le vendeur

Acheter neuf

EUR 26,11
Autre devise
Frais de port : EUR 17
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 5 disponible(s)

Ajouter au panier

Image d'archives

Nokeri, Tshepo Chris
Edité par Apress 2021-10, 2021
ISBN 10 : 1484277619 ISBN 13 : 9781484277614
Neuf PF

Vendeur : Chiron Media, Wallingford, Royaume-Uni

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

PF. Etat : New. N° de réf. du vendeur 6666-IUK-9781484277614

Contacter le vendeur

Acheter neuf

EUR 32,88
Autre devise
Frais de port : EUR 10,85
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 10 disponible(s)

Ajouter au panier

Image d'archives

Tshepo Chris Nokeri
Edité par APress, 2021
ISBN 10 : 1484277619 ISBN 13 : 9781484277614
Neuf Paperback / softback
impression à la demande

Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback / softback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 209. N° de réf. du vendeur C9781484277614

Contacter le vendeur

Acheter neuf

EUR 40,68
Autre devise
Frais de port : EUR 4,86
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Nokeri, Tshepo Chris
Edité par Apress, 2021
ISBN 10 : 1484277619 ISBN 13 : 9781484277614
Ancien ou d'occasion Couverture souple

Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 43689087

Contacter le vendeur

Acheter D'occasion

EUR 31,29
Autre devise
Frais de port : EUR 17,15
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 5 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Tshepo Chris Nokeri
Edité par Apress Okt 2021, 2021
ISBN 10 : 1484277619 ISBN 13 : 9781484277614
Neuf Taschenbuch
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Apply supervised and unsupervised learning to solve practical and real-world big data problems. This book teaches you how to engineer features, optimize hyperparameters, train and test models, develop pipelines, and automate the machine learning (ML) process.The book covers an in-memory, distributed cluster computing framework known as PySpark, machine learning framework platforms known as scikit-learn, PySpark MLlib, H2O, and XGBoost, and a deep learning (DL) framework known as Keras. The book starts off presenting supervised and unsupervised ML and DL models, and then it examines big data frameworks along with ML and DL frameworks. Author Tshepo Chris Nokeri considers a parametric model known as the Generalized Linear Model and a survival regression model known as the Cox Proportional Hazards model along with Accelerated Failure Time (AFT). Also presented is a binary classification model (logistic regression) and an ensemble model (Gradient Boosted Trees). The book introduces DL and an artificial neural network known as the Multilayer Perceptron (MLP) classifier. A way of performing cluster analysis using the K-Means model is covered. Dimension reduction techniques such as Principal Components Analysis and Linear Discriminant Analysis are explored. And automated machine learning is unpacked.This book is for intermediate-level data scientists and machine learning engineers who want to learn how to apply key big data frameworks and ML and DL frameworks. You will need prior knowledge of the basics of statistics, Python programming, probability theories, and predictive analytics.What You Will LearnUnderstand widespread supervised and unsupervised learning, including key dimension reduction techniquesKnow the big data analytics layers such as data visualization, advanced statistics, predictive analytics, machine learning, and deep learningIntegrate big data frameworks with a hybrid of machine learning frameworks and deep learning frameworksDesign, build, test, and validate skilled machine models and deep learning modelsOptimize model performance using data transformation, regularization, outlier remedying, hyperparameter optimization, and data split ratio alterationWho This Book Is ForData scientists and machine learning engineers with basic knowledge and understanding of Python programming, probability theories, and predictive analytics 136 pp. Englisch. N° de réf. du vendeur 9781484277614

Contacter le vendeur

Acheter neuf

EUR 37,44
Autre devise
Frais de port : EUR 11
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Tshepo Chris Nokeri
Edité par Apress, Apress, 2021
ISBN 10 : 1484277619 ISBN 13 : 9781484277614
Neuf Taschenbuch
impression à la demande

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Apply supervised and unsupervised learning to solve practical and real-world big data problems. This book teaches you how to engineer features, optimize hyperparameters, train and test models, develop pipelines, and automate the machine learning (ML) process.The book covers an in-memory, distributed cluster computing framework known as PySpark, machine learning framework platforms known as scikit-learn, PySpark MLlib, H2O, and XGBoost, and a deep learning (DL) framework known as Keras. The book starts off presenting supervised and unsupervised ML and DL models, and then it examines big data frameworks along with ML and DL frameworks. Author Tshepo Chris Nokeri considers a parametric model known as the Generalized Linear Model and a survival regression model known as the Cox Proportional Hazards model along with Accelerated Failure Time (AFT). Also presented is a binary classification model (logistic regression) and an ensemble model (Gradient Boosted Trees). The book introduces DL and an artificial neural network known as the Multilayer Perceptron (MLP) classifier. A way of performing cluster analysis using the K-Means model is covered. Dimension reduction techniques such as Principal Components Analysis and Linear Discriminant Analysis are explored. And automated machine learning is unpacked.This book is for intermediate-level data scientists and machine learning engineers who want to learn how to apply key big data frameworks and ML and DL frameworks. You will need prior knowledge of the basics of statistics, Python programming, probability theories, and predictive analytics.What You Will LearnUnderstand widespread supervised and unsupervised learning, including key dimension reduction techniquesKnow the big data analytics layers such as data visualization, advanced statistics, predictive analytics, machine learning, and deep learningIntegrate big data frameworks with a hybrid of machine learning frameworks and deep learning frameworksDesign, build, test, and validate skilled machine models and deep learning modelsOptimize model performance using data transformation, regularization, outlier remedying, hyperparameter optimization, and data split ratio alterationWho This Book Is ForData scientists and machine learning engineers with basic knowledge and understanding of Python programming, probability theories, and predictive analytics. N° de réf. du vendeur 9781484277614

Contacter le vendeur

Acheter neuf

EUR 38,62
Autre devise
Frais de port : EUR 10,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Tshepo Chris Nokeri
Edité par Apress, Apress Okt 2021, 2021
ISBN 10 : 1484277619 ISBN 13 : 9781484277614
Neuf Taschenbuch

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Neuware -Apply supervised and unsupervised learning to solve practical and real-world big data problems. This book teaches you how to engineer features, optimize hyperparameters, train and test models, develop pipelines, and automate the machine learning (ML) process.APress in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 136 pp. Englisch. N° de réf. du vendeur 9781484277614

Contacter le vendeur

Acheter neuf

EUR 37,44
Autre devise
Frais de port : EUR 15
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

There are 5 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre