Articles liés à Time Series Algorithms Recipes: Implement Machine Learning...

Time Series Algorithms Recipes: Implement Machine Learning and Deep Learning Techniques with Python - Couverture souple

 
9781484289778: Time Series Algorithms Recipes: Implement Machine Learning and Deep Learning Techniques with Python

Synopsis

This book teaches the practical implementation of various concepts for time series analysis and modeling with Python through problem-solution-style recipes, starting with data reading and preprocessing.
It begins with the fundamentals of time series forecasting using statistical modeling methods like AR (autoregressive), MA (moving-average), ARMA (autoregressive moving-average), and ARIMA (autoregressive integrated moving-average). Next, you'll learn univariate and multivariate modeling using different open-sourced packages like Fbprohet, stats model, and sklearn. You'll also gain insight into classic machine learning-based regression models like randomForest, Xgboost, and LightGBM for forecasting problems. The book concludes by demonstrating the implementation of deep learning models (LSTMs and ANN) for time series forecasting. Each chapter includes several code examples and illustrations. After finishing this book, you will have a foundational understanding of various concepts relating to time series and its implementation in Python. What You Will Learn

  • Implement various techniques in time series analysis using Python.
  • Utilize statistical modeling methods such as AR (autoregressive), MA (moving-average), ARMA (autoregressive moving-average) and ARIMA (autoregressive integrated moving-average) for time series forecasting
  • Understand univariate and multivariate modeling for time series forecasting
  • Forecast using machine learning and deep learning techniques such as GBM and LSTM (long short-term memory)
Who This Book Is ForData Scientists, Machine Learning Engineers, and software developers interested in time series analysis.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Akshay Kulkarni is an AI and machine learning (ML) evangelist and a thought leader. He has consulted several Fortune 500 and global enterprises to drive AI and data science-led strategic transformations. He has been honoured as Google Developer Expert, and is an Author and a regular speaker at top AI and data science conferences (including Strata, O'Reilly AI Conf, and GIDS). He is a visiting faculty member for some of the top graduate institutes in India. In 2019, he has been also featured as one of the top 40 under 40 Data Scientists in India. In his spare time, he enjoys reading, writing, coding, and helping aspiring data scientists. He lives in Bangalore with his family.

Adarsha Shivananda is a Data science and MLOps Leader. He is working on creating worldclass MLOps capabilities to ensure continuous value delivery from AI. He aims to build a pool of exceptional data scientists within and outside of the organization to solve problems through training programs, and always wants to stay ahead of the curve. He has worked extensively in the pharma, healthcare, CPG, retail, and marketing domains. He lives in Bangalore and loves to read and teach data science.

Anoosh Kulkarni is a data scientist and a Senior AI consultant. He has worked with global clients across multiple domains and helped them solve their business problems using machine learning (ML), natural language processing (NLP), and deep learning.. Anoosh is passionate about guiding and mentoring people in their data science journey. He leads data science/machine learning meet-ups and helps aspiring data scientists navigate their careers. He also conducts ML/AI workshops at universities and is actively involved in conducting webinars, talks, and sessions on AI and data science. He lives in Bangalore with his family.

V Adithya Krishnan is a data scientist and ML Ops Engineer. He has worked with various global clients across multiple domainsand helped them to solve their business problems extensively using advanced Machine learning (ML) applications. He has experience across multiple fields of AI-ML, including, Time-series forecasting, Deep Learning, NLP, ML Operations, Image processing, and data analytics. Presently, he is working on a state-of-the-art value observability suite for models in production, which includes continuous model and data monitoring along with the business value realized. He also published a paper at an IEEE conference, "Deep Learning Based Approach for Range Estimation," written in collaboration with the DRDO. He lives in Chennai with his family.


Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

  • ÉditeurApress
  • Date d'édition2022
  • ISBN 10 1484289773
  • ISBN 13 9781484289778
  • ReliureBroché
  • Langueanglais
  • Numéro d'édition1
  • Nombre de pages192
  • Coordonnées du fabricantnon disponible

Acheter D'occasion

état :  Comme neuf
Unread book in perfect condition...
Afficher cet article
EUR 20,98

Autre devise

EUR 17,80 expédition depuis Etats-Unis vers France

Destinations, frais et délais

Acheter neuf

Afficher cet article
EUR 30,27

Autre devise

EUR 7,12 expédition depuis Etats-Unis vers France

Destinations, frais et délais

Autres éditions populaires du même titre

9781484289792: Time Series Algorithms Recipes: Implement Machine Learning and Deep Learning Techniques with Python

Edition présentée

ISBN 10 :  148428979X ISBN 13 :  9781484289792
Editeur : Apress, 2023
Couverture souple

Résultats de recherche pour Time Series Algorithms Recipes: Implement Machine Learning...

Image d'archives

Kulkarni, Akshay R; Shivananda, Adarsha; Kulkarni, Anoosh; Krishnan, V Adithya
Edité par Apress, 2022
ISBN 10 : 1484289773 ISBN 13 : 9781484289778
Neuf Couverture souple

Vendeur : California Books, Miami, FL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur I-9781484289778

Contacter le vendeur

Acheter neuf

EUR 30,27
Autre devise
Frais de port : EUR 7,12
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Kulkarni, Akshay R.
Edité par Apress 12/24/2022, 2022
ISBN 10 : 1484289773 ISBN 13 : 9781484289778
Neuf Paperback or Softback

Vendeur : BargainBookStores, Grand Rapids, MI, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback or Softback. Etat : New. Time Series Algorithms Recipes: Implement Machine Learning and Deep Learning Techniques with Python 0.61. Book. N° de réf. du vendeur BBS-9781484289778

Contacter le vendeur

Acheter neuf

EUR 26,74
Autre devise
Frais de port : EUR 11,13
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 5 disponible(s)

Ajouter au panier

Image d'archives

Akshay R Kulkarni
Edité par APress, 2022
ISBN 10 : 1484289773 ISBN 13 : 9781484289778
Neuf Paperback / softback

Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback / softback. Etat : New. New copy - Usually dispatched within 2 working days. 184. N° de réf. du vendeur B9781484289778

Contacter le vendeur

Acheter neuf

EUR 33,41
Autre devise
Frais de port : EUR 4,90
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Kulkarni, Akshay R;shivananda, Adarsha;kulkarni, Anoosh;krishnan, V Adithya
Edité par Apress, 2022
ISBN 10 : 1484289773 ISBN 13 : 9781484289778
Ancien ou d'occasion Couverture souple

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 45291587

Contacter le vendeur

Acheter D'occasion

EUR 20,98
Autre devise
Frais de port : EUR 17,80
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Kulkarni, Akshay R; Shivananda, Adarsha; Kulkarni, Anoosh; Krishnan, V Adithya
Edité par Apress, 2022
ISBN 10 : 1484289773 ISBN 13 : 9781484289778
Neuf Couverture souple

Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. In. N° de réf. du vendeur ria9781484289778_new

Contacter le vendeur

Acheter neuf

EUR 36,34
Autre devise
Frais de port : EUR 4,77
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Kulkarni, Akshay R|Shivananda, Adarsha|Kulkarni, Anoosh|Krishnan, V Adithya
Edité par Springer, Berlin|Apress, 2023
ISBN 10 : 1484289773 ISBN 13 : 9781484289778
Neuf Couverture souple

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 715557257

Contacter le vendeur

Acheter neuf

EUR 32,39
Autre devise
Frais de port : EUR 9,70
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Kulkarni, Akshay R;shivananda, Adarsha;kulkarni, Anoosh;krishnan, V Adithya
Edité par Apress, 2022
ISBN 10 : 1484289773 ISBN 13 : 9781484289778
Neuf Couverture souple

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 45291587-n

Contacter le vendeur

Acheter neuf

EUR 24,32
Autre devise
Frais de port : EUR 17,80
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Akshay Kulkarni
Edité par APress, 2022
ISBN 10 : 1484289773 ISBN 13 : 9781484289778
Neuf Paperback / softback
impression à la demande

Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback / softback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days. N° de réf. du vendeur C9781484289778

Contacter le vendeur

Acheter neuf

EUR 35,05
Autre devise
Frais de port : EUR 7,17
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Akshay R Kulkarni
Edité par Apress Dez 2022, 2022
ISBN 10 : 1484289773 ISBN 13 : 9781484289778
Neuf Taschenbuch
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book teaches the practical implementation of various concepts for time series analysis and modeling with Python through problem-solution-style recipes, starting with data reading and preprocessing.It begins with the fundamentals of time series forecasting using statistical modeling methods like AR (autoregressive), MA (moving-average), ARMA (autoregressive moving-average), and ARIMA (autoregressive integrated moving-average). Next, you'll learn univariate and multivariate modeling using different open-sourced packages like Fbprohet, stats model, and sklearn. You'll also gain insight into classic machine learning-based regression models like randomForest, Xgboost, and LightGBM for forecasting problems. The book concludes by demonstrating the implementation of deep learning models (LSTMs and ANN) for time series forecasting. Each chapter includes several code examples and illustrations.After finishing this book,you will have a foundational understanding of various concepts relating to time series and its implementation in Python.What You Will LearnImplement various techniques in time series analysis using Python.Utilize statistical modeling methods such as AR (autoregressive), MA (moving-average), ARMA (autoregressive moving-average) and ARIMA (autoregressive integrated moving-average) for time series forecastingUnderstand univariate and multivariate modeling for time series forecastingForecast using machine learning and deep learning techniques such as GBM and LSTM (long short-term memory)Who This Book Is ForData Scientists, Machine Learning Engineers, and software developers interested in time series analysis. 192 pp. Englisch. N° de réf. du vendeur 9781484289778

Contacter le vendeur

Acheter neuf

EUR 37,44
Autre devise
Frais de port : EUR 11
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Akshay R Kulkarni
Edité par Apress, Apress, 2022
ISBN 10 : 1484289773 ISBN 13 : 9781484289778
Neuf Taschenbuch
impression à la demande

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This book teaches the practical implementation of various concepts for time series analysis and modeling with Python through problem-solution-style recipes, starting with data reading and preprocessing.It begins with the fundamentals of time series forecasting using statistical modeling methods like AR (autoregressive), MA (moving-average), ARMA (autoregressive moving-average), and ARIMA (autoregressive integrated moving-average). Next, you'll learn univariate and multivariate modeling using different open-sourced packages like Fbprohet, stats model, and sklearn. You'll also gain insight into classic machine learning-based regression models like randomForest, Xgboost, and LightGBM for forecasting problems. The book concludes by demonstrating the implementation of deep learning models (LSTMs and ANN) for time series forecasting. Each chapter includes several code examples and illustrations.After finishing this book,you will have a foundational understanding of various concepts relating to time series and its implementation in Python.What You Will LearnImplement various techniques in time series analysis using Python.Utilize statistical modeling methods such as AR (autoregressive), MA (moving-average), ARMA (autoregressive moving-average) and ARIMA (autoregressive integrated moving-average) for time series forecastingUnderstand univariate and multivariate modeling for time series forecastingForecast using machine learning and deep learning techniques such as GBM and LSTM (long short-term memory)Who This Book Is ForData Scientists, Machine Learning Engineers, and software developers interested in time series analysis. N° de réf. du vendeur 9781484289778

Contacter le vendeur

Acheter neuf

EUR 38,35
Autre devise
Frais de port : EUR 10,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

There are 8 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre