Articles liés à Simulationbased Optimization

Gosavi, Abhijit Simulationbased Optimization ISBN 13 : 9781489974907

Simulationbased Optimization - Couverture rigide

 
9781489974907: Simulationbased Optimization

Synopsis

Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning introduce the evolving area of static and dynamic simulation-based optimization. Covered in detail are model-free optimization techniques - especially designed for those discrete-event, stochastic systems which can be simulated but whose analytical models are difficult to find in closed mathematical forms.

Key features of this revised and improved Second Edition include:

- Extensive coverage, via step-by-step recipes, of powerful new algorithms for static simulation optimization, including simultaneous perturbation, backtracking adaptive search and nested partitions, in addition to traditional methods, such as response surfaces, Nelder-Mead search and meta-heuristics (simulated annealing, tabu search, and genetic algorithms)

- Detailed coverage of the Bellman equation framework for Markov Decision Processes (MDPs), along with dynamic programming (value and policy iteration) for discounted, average, and total reward performance metrics

- An in-depth consideration of dynamic simulation optimization via temporal differences and Reinforcement Learning: Q-Learning, SARSA, and R-SMART algorithms, and policy search, via API, Q-P-Learning, actor-critics, and learning automata

- A special examination of neural-network-based function approximation for Reinforcement Learning, semi-Markov decision processes (SMDPs), finite-horizon problems, two time scales, case studies for industrial tasks, computer codes (placed online) and convergence proofs, via Banach fixed point theory and Ordinary Differential Equations

Themed around three areas in separate sets of chapters - Static Simulation Optimization, Reinforcement Learning and Convergence Analysis - this book is written for researchers and students in the fields of engineering (industrial, systems, electrical and computer), operations research, computer science and applied mathematics.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Abhijit Gosavi is a leading international authority on reinforcement learning, stochastic dynamic programming and simulation-based optimization. The first edition of his Springer book "Simulation-Based Optimization" that appeared in 2003 was the first text to have appeared on that topic. He is regularly an invited speaker at major national and international conferences on operations research, reinforcement learning, adaptive/approximate dynamic programming, and systems engineering.

He has published more than fifty journal and conference articles - many of which have appeared in leading scholarly journals such as Management Science, Automatica, INFORMS Journal on Computing, Machine Learning, Journal of Retailing, Systems and Control Letters and the European Journal of Operational Research. He has also authored numerous book chapters on simulation-based optimization and operations research. His research has been funded by the National Science Foundation, Department of Defense, Missouri Department of Transportation, University of Missouri Research Board and industry. He has consulted extensively for the U.S. Department of Veterans Affairs and the mass media as a statistical/simulation analyst. He has received teaching awards from the Institute of Industrial Engineers.

He currently serves as an Associate Professor of Engineering Management and Systems Engineering at Missouri University of Science and Technology in Rolla, MO. He holds a masters degree in Mechanical Engineering from the Indian Institute of Technology and a Ph.D. in Industrial Engineering from the University of South Florida. He is a member of INFORMS, IIE and ASEE.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

  • ÉditeurSpringer-Verlag New York Inc.
  • Date d'édition2014
  • ISBN 10 1489974903
  • ISBN 13 9781489974907
  • ReliureRelié
  • Langueanglais
  • Numéro d'édition2
  • Nombre de pages508
  • Coordonnées du fabricantnon disponible

Acheter D'occasion

état :  Satisfaisant
Connecting readers with great books...
Afficher cet article
EUR 100,79

Autre devise

EUR 91,01 expédition depuis Etats-Unis vers France

Destinations, frais et délais

Acheter neuf

Afficher cet article
EUR 129,92

Autre devise

EUR 2,90 expédition depuis Etats-Unis vers France

Destinations, frais et délais

Autres éditions populaires du même titre

9781489977311: Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning

Edition présentée

ISBN 10 :  1489977317 ISBN 13 :  9781489977311
Editeur : Springer, 2016
Couverture souple

Résultats de recherche pour Simulationbased Optimization

Image d'archives

0
Edité par Springer, 2014
ISBN 10 : 1489974903 ISBN 13 : 9781489974907
Neuf Couverture rigide

Vendeur : Basi6 International, Irving, TX, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. N° de réf. du vendeur ABEJUNE24-10811

Contacter le vendeur

Acheter neuf

EUR 129,92
Autre devise
Frais de port : EUR 2,90
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Gosavi, Abhijit
Edité par Springer, 2014
ISBN 10 : 1489974903 ISBN 13 : 9781489974907
Neuf Couverture rigide

Vendeur : Books Puddle, New York, NY, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 26133670311

Contacter le vendeur

Acheter neuf

EUR 144,82
Autre devise
Frais de port : EUR 7,80
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Gosavi, Abhijit
Edité par Springer, 2014
ISBN 10 : 1489974903 ISBN 13 : 9781489974907
Neuf Couverture rigide

Vendeur : Majestic Books, Hounslow, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 125835896

Contacter le vendeur

Acheter neuf

EUR 146,96
Autre devise
Frais de port : EUR 10,39
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Abhijit Gosavi
Edité par Springer US, 2014
ISBN 10 : 1489974903 ISBN 13 : 9781489974907
Neuf Couverture rigide
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Gebunden. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Brings the field completely up to dateAll computer code brought up to dateNew material not covered in first edition includes nested partitions, simultaneous perturbation, backtracking adaptive search and the stochastic ruler method. N° de réf. du vendeur 4212689

Contacter le vendeur

Acheter neuf

EUR 149,85
Autre devise
Frais de port : EUR 9,70
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Gosavi, Abhijit
Edité par Springer, 2014
ISBN 10 : 1489974903 ISBN 13 : 9781489974907
Neuf Couverture rigide

Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 18133670317

Contacter le vendeur

Acheter neuf

EUR 155,38
Autre devise
Frais de port : EUR 7,95
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Gosavi, Abhijit
Edité par Springer, 2014
ISBN 10 : 1489974903 ISBN 13 : 9781489974907
Neuf Couverture rigide

Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. In English. N° de réf. du vendeur ria9781489974907_new

Contacter le vendeur

Acheter neuf

EUR 168,40
Autre devise
Frais de port : EUR 4,69
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Gosavi, Abhijit
Edité par Springer, 2014
ISBN 10 : 1489974903 ISBN 13 : 9781489974907
Ancien ou d'occasion Couverture rigide

Vendeur : HPB-Red, Dallas, TX, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Hardcover. Etat : Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! N° de réf. du vendeur S_343558746

Contacter le vendeur

Acheter D'occasion

EUR 100,79
Autre devise
Frais de port : EUR 91,01
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Abhijit Gosavi
ISBN 10 : 1489974903 ISBN 13 : 9781489974907
Neuf Couverture rigide
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning introduce the evolving area of static and dynamic simulation-based optimization. Covered in detail are model-free optimization techniques - especially designed for those discrete-event, stochastic systems which can be simulated but whose analytical models are difficult to find in closed mathematical forms.Key features of this revised and improved Second Edition include: Extensive coverage, via step-by-step recipes, of powerful new algorithms for static simulation optimization, including simultaneous perturbation, backtracking adaptive search and nested partitions, in addition to traditional methods, such as response surfaces, Nelder-Mead search and meta-heuristics (simulated annealing, tabu search, and genetic algorithms) Detailed coverage of the Bellman equation framework for Markov Decision Processes (MDPs), along with dynamic programming(value and policy iteration) for discounted, average, and total reward performance metrics An in-depth consideration of dynamic simulation optimization via temporal differences and Reinforcement Learning: Q-Learning, SARSA, and R-SMART algorithms, and policy search, via API, Q-P-Learning, actor-critics, and learning automata A special examination of neural-network-based function approximation for Reinforcement Learning, semi-Markov decision processes (SMDPs), finite-horizon problems, two time scales, case studies for industrial tasks, computer codes (placed online) and convergence proofs, via Banach fixed point theory and Ordinary Differential EquationsThemed around three areas in separate sets of chapters - Static Simulation Optimization, Reinforcement Learning and Convergence Analysis - this book is written for researchers and students in the fields of engineering (industrial, systems,electrical and computer), operations research, computer science and applied mathematics. 536 pp. Englisch. N° de réf. du vendeur 9781489974907

Contacter le vendeur

Acheter neuf

EUR 181,89
Autre devise
Frais de port : EUR 11
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Abhijit Gosavi
ISBN 10 : 1489974903 ISBN 13 : 9781489974907
Neuf Couverture rigide

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. Neuware -Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning introduce the evolving area of static and dynamic simulation-based optimization. Covered in detail are model-free optimization techniques ¿ especially designed for those discrete-event, stochastic systems which can be simulated but whose analytical models are difficult to find in closed mathematical forms.Key features of this revised and improved Second Edition include: Extensive coverage, via step-by-step recipes, of powerful new algorithms for static simulation optimization, including simultaneous perturbation, backtracking adaptive search and nested partitions, in addition to traditional methods, such as response surfaces, Nelder-Mead search and meta-heuristics (simulated annealing, tabu search, and genetic algorithms) Detailed coverage of the Bellman equation framework for Markov Decision Processes (MDPs), along with dynamic programming(value and policy iteration) for discounted, average, and total reward performance metrics An in-depth consideration of dynamic simulation optimization via temporal differences and Reinforcement Learning: Q-Learning, SARSA, and R-SMART algorithms, and policy search, via API, Q-P-Learning, actor-critics, and learning automata A special examination of neural-network-based function approximation for Reinforcement Learning, semi-Markov decision processes (SMDPs), finite-horizon problems, two time scales, case studies for industrial tasks, computer codes (placed online) and convergence proofs, via Banach fixed point theory and Ordinary Differential EquationsThemed around three areas in separate sets of chapters ¿ Static Simulation Optimization, Reinforcement Learning and Convergence Analysis ¿ this book is written for researchers and students in the fields of engineering (industrial, systems,electrical and computer), operations research, computer science and applied mathematics.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 536 pp. Englisch. N° de réf. du vendeur 9781489974907

Contacter le vendeur

Acheter neuf

EUR 181,89
Autre devise
Frais de port : EUR 15
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Abhijit Gosavi
Edité par Springer US, Springer US, 2014
ISBN 10 : 1489974903 ISBN 13 : 9781489974907
Neuf Couverture rigide

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning introduce the evolving area of static and dynamic simulation-based optimization. Covered in detail are model-free optimization techniques - especially designed for those discrete-event, stochastic systems which can be simulated but whose analytical models are difficult to find in closed mathematical forms.Key features of this revised and improved Second Edition include: Extensive coverage, via step-by-step recipes, of powerful new algorithms for static simulation optimization, including simultaneous perturbation, backtracking adaptive search and nested partitions, in addition to traditional methods, such as response surfaces, Nelder-Mead search and meta-heuristics (simulated annealing, tabu search, and genetic algorithms) Detailed coverage of the Bellman equation framework for Markov Decision Processes (MDPs), along with dynamic programming(value and policy iteration) for discounted, average, and total reward performance metrics An in-depth consideration of dynamic simulation optimization via temporal differences and Reinforcement Learning: Q-Learning, SARSA, and R-SMART algorithms, and policy search, via API, Q-P-Learning, actor-critics, and learning automata A special examination of neural-network-based function approximation for Reinforcement Learning, semi-Markov decision processes (SMDPs), finite-horizon problems, two time scales, case studies for industrial tasks, computer codes (placed online) and convergence proofs, via Banach fixed point theory and Ordinary Differential EquationsThemed around three areas in separate sets of chapters - Static Simulation Optimization, Reinforcement Learning and Convergence Analysis - this book is written for researchers and students in the fields of engineering (industrial, systems,electrical and computer), operations research, computer science and applied mathematics. N° de réf. du vendeur 9781489974907

Contacter le vendeur

Acheter neuf

EUR 187,59
Autre devise
Frais de port : EUR 10,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

There are 2 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre