Ensemble Machine Learning: Methods and Applications - Couverture souple

 
9781489988171: Ensemble Machine Learning: Methods and Applications

Synopsis

It is common wisdom that gathering a variety of views and inputs improves the process of decision making, and, indeed, underpins a democratic society. Dubbed “ensemble learning” by researchers in computational intelligence and machine learning, it is known to improve a decision system’s robustness and accuracy. Now, fresh developments are allowing researchers to unleash the power of ensemble learning in an increasing range of real-world applications. Ensemble learning algorithms such as “boosting” and “random forest” facilitate solutions to key computational issues such as face recognition and are now being applied in areas as diverse as object tracking and bioinformatics.

Responding to a shortage of literature dedicated to the topic, this volume offers comprehensive coverage of state-of-the-art ensemble learning techniques, including the random forest skeleton tracking algorithm in the Xbox Kinect sensor, which bypasses the need for game controllers. At once a solid theoretical study and a practical guide, the volume is a windfall for researchers and practitioners alike.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Dr. Zhang works for Microsoft. Dr. Ma works for Honeywell.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Autres éditions populaires du même titre

9781441993250: Ensemble Machine Learning: Methods and Applications

Edition présentée

ISBN 10 :  1441993258 ISBN 13 :  9781441993250
Editeur : Springer-Verlag New York Inc., 2012
Couverture rigide