Articles liés à Learning in Non-Stationary Environments: Methods and...

Learning in Non-Stationary Environments: Methods and Applications - Couverture souple

 
9781489993403: Learning in Non-Stationary Environments: Methods and Applications

Synopsis

Recent decades have seen rapid advances in automatization processes, supported by modern machines and computers. The result is significant increases in system complexity and state changes, information sources, the need for faster data handling and the integration of environmental influences. Intelligent systems, equipped with a taxonomy of data-driven system identification and machine learning algorithms, can handle these problems partially. Conventional learning algorithms in a batch off-line setting fail whenever dynamic changes of the process appear due to non-stationary environments and external influences.

Learning in Non-Stationary Environments: Methods and Applications offers a wide-ranging, comprehensive review of recent developments and important methodologies in the field. The coverage focuses on dynamic learning in unsupervised problems, dynamic learning in supervised classification and dynamic learning in supervised regression problems. A later section is dedicated to applications in which dynamic learning methods serve as keystones for achieving models with high accuracy.

Rather than rely on a mathematical theorem/proof style, the editors highlight numerous figures, tables, examples and applications, together with their explanations.

This approach offers a useful basis for further investigation and fresh ideas and motivates and inspires newcomers to explore this promising and still emerging field of research.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

Acheter D'occasion

état :  Comme neuf
Like New
Afficher cet article
EUR 226,62

Autre devise

EUR 28,80 expédition depuis Royaume-Uni vers France

Destinations, frais et délais

Acheter neuf

Afficher cet article
EUR 136,16

Autre devise

EUR 9,70 expédition depuis Allemagne vers France

Destinations, frais et délais

Autres éditions populaires du même titre

9781441980199: Learning in Non-Stationary Environments: Methods and Applications

Edition présentée

ISBN 10 :  1441980199 ISBN 13 :  9781441980199
Editeur : Springer-Verlag New York Inc., 2012
Couverture rigide

Résultats de recherche pour Learning in Non-Stationary Environments: Methods and...

Image fournie par le vendeur

Sayed-Mouchaweh, Moamar|Lughofer, Edwin
Edité par Springer New York, 2014
ISBN 10 : 1489993401 ISBN 13 : 9781489993403
Neuf Couverture souple
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Shows the state-of-the-art in dynamic learning, discussing advanced aspects and conceptsPresenting open problems and future challenges in this fieldExamines the links between the different methods and techniques of dynamic learning in non-s. N° de réf. du vendeur 4213213

Contacter le vendeur

Acheter neuf

EUR 136,16
Autre devise
Frais de port : EUR 9,70
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Sayed-Mouchaweh, Moamar
Edité par Springer, 2014
ISBN 10 : 1489993401 ISBN 13 : 9781489993403
Neuf Couverture souple
impression à la demande

Vendeur : Brook Bookstore On Demand, Napoli, NA, Italie

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : new. Questo è un articolo print on demand. N° de réf. du vendeur 12b462fd7f4ff537847710c33ddcf633

Contacter le vendeur

Acheter neuf

EUR 126,26
Autre devise
Frais de port : EUR 40
De Italie vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Edité par Springer, 2014
ISBN 10 : 1489993401 ISBN 13 : 9781489993403
Neuf Couverture souple

Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. In. N° de réf. du vendeur ria9781489993403_new

Contacter le vendeur

Acheter neuf

EUR 165,19
Autre devise
Frais de port : EUR 4,60
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Edwin Lughofer
Edité par Springer New York Mai 2014, 2014
ISBN 10 : 1489993401 ISBN 13 : 9781489993403
Neuf Taschenbuch
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Recent decades have seen rapid advances in automatization processes, supported by modern machines and computers. The result is significant increases in system complexity and state changes, information sources, the need for faster data handling and the integration of environmental influences. Intelligent systems, equipped with a taxonomy of data-driven system identification and machine learning algorithms, can handle these problems partially. Conventional learning algorithms in a batch off-line setting fail whenever dynamic changes of the process appear due to non-stationary environments and external influences. Learning in Non-Stationary Environments: Methods and Applications offers a wide-ranging, comprehensive review of recent developments and important methodologies in the field. The coverage focuses on dynamic learning in unsupervised problems, dynamic learning in supervised classification and dynamic learning in supervised regression problems. A later section is dedicated to applications in which dynamic learning methods serve as keystones for achieving models with high accuracy. Rather than rely on a mathematical theorem/proof style, the editors highlight numerous figures, tables, examples and applications, together with their explanations. This approach offers a useful basis for further investigation and fresh ideas and motivates and inspires newcomers to explore this promising and still emerging field of research. 452 pp. Englisch. N° de réf. du vendeur 9781489993403

Contacter le vendeur

Acheter neuf

EUR 160,49
Autre devise
Frais de port : EUR 11
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Edwin Lughofer
ISBN 10 : 1489993401 ISBN 13 : 9781489993403
Neuf Taschenbuch

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Recent decades have seen rapid advances in automatization processes, supported by modern machines and computers. The result is significant increases in system complexity and state changes, information sources, the need for faster data handling and the integration of environmental influences. Intelligent systems, equipped with a taxonomy of data-driven system identification and machine learning algorithms, can handle these problems partially. Conventional learning algorithms in a batch off-line setting fail whenever dynamic changes of the process appear due to non-stationary environments and external influences. Learning in Non-Stationary Environments: Methods and Applications offers a wide-ranging, comprehensive review of recent developments and important methodologies in the field. The coverage focuses on dynamic learning in unsupervised problems, dynamic learning in supervised classification and dynamic learning in supervised regression problems. A later section is dedicated to applications in which dynamic learning methods serve as keystones for achieving models with high accuracy. Rather than rely on a mathematical theorem/proof style, the editors highlight numerous figures, tables, examples and applications, together with their explanations. This approach offers a useful basis for further investigation and fresh ideas and motivates and inspires newcomers to explore this promising and still emerging field of research. N° de réf. du vendeur 9781489993403

Contacter le vendeur

Acheter neuf

EUR 164,49
Autre devise
Frais de port : EUR 10,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Edwin Lughofer
ISBN 10 : 1489993401 ISBN 13 : 9781489993403
Neuf Taschenbuch
impression à la demande

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -Recent decades have seen rapid advances in automatization processes, supported by modern machines and computers. The result is significant increases in system complexity and state changes, information sources, the need for faster data handling and the integration of environmental influences. Intelligent systems, equipped with a taxonomy of data-driven system identification and machine learning algorithms, can handle these problems partially. Conventional learning algorithms in a batch off-line setting fail whenever dynamic changes of the process appear due to non-stationary environments and external influences.Learning in Non-Stationary Environments: Methods and Applications offers a wide-ranging, comprehensive review of recent developments and important methodologies in the field. The coverage focuses on dynamic learning in unsupervised problems, dynamic learning in supervised classification and dynamic learning in supervised regression problems. A later section is dedicated to applications in which dynamic learning methods serve as keystones for achieving models with high accuracy.Rather than rely on a mathematical theorem/proof style, the editors highlight numerous figures, tables, examples and applications, together with their explanations.This approach offers a useful basis for further investigation and fresh ideas and motivates and inspires newcomers to explore this promising and still emerging field of research.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 452 pp. Englisch. N° de réf. du vendeur 9781489993403

Contacter le vendeur

Acheter neuf

EUR 160,49
Autre devise
Frais de port : EUR 15
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Edité par Springer, 2014
ISBN 10 : 1489993401 ISBN 13 : 9781489993403
Neuf Couverture souple

Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur ABLIING23Mar2716030159589

Contacter le vendeur

Acheter neuf

EUR 157,87
Autre devise
Frais de port : EUR 64,23
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Edité par Springer, 2014
ISBN 10 : 1489993401 ISBN 13 : 9781489993403
Ancien ou d'occasion Paperback

Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : Like New. Like New. book. N° de réf. du vendeur ERICA77314899934016

Contacter le vendeur

Acheter D'occasion

EUR 226,62
Autre devise
Frais de port : EUR 28,80
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier