Articles liés à Practical Machine Learning: A New Look at Anomaly Detection

Practical Machine Learning: A New Look at Anomaly Detection - Couverture souple

 
9781491911600: Practical Machine Learning: A New Look at Anomaly Detection

Synopsis

Finding Data Anomalies You Didn't Know to Look For

Anomaly detection is the detective work of machine learning: finding the unusual, catching the fraud, discovering strange activity in large and complex datasets. But, unlike Sherlock Holmes, you may not know what the puzzle is, much less what "suspects" you're looking for. This O'Reilly report uses practical examples to explain how the underlying concepts of anomaly detection work.

From banking security to natural sciences, medicine, and marketing, anomaly detection has many useful applications in this age of big data. And the search for anomalies will intensify once the Internet of Things spawns even more new types of data. The concepts described in this report will help you tackle anomaly detection in your own project.

  • Use probabilistic models to predict what's normal and contrast that to what you observe
  • Set an adaptive threshold to determine which data falls outside of the normal range, using the t-digest algorithm
  • Establish normal fluctuations in complex systems and signals (such as an EKG) with a more adaptive probablistic model
  • Use historical data to discover anomalies in sporadic event streams, such as web traffic
  • Learn how to use deviations in expected behavior to trigger fraud alerts

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos des auteurs

Ted Dunning is Chief Applications Architect at MapR Technologies and committer and PMC member of the Apache Mahout, Apache ZooKeeper, and Apache Drill projects and mentor for these Apache projects: Spark, Storm, Stratosphere, and Datafu. He contributed to Mahout clustering, classification, and matrix decomposition algorithms and helped expand the new version of Mahout Math library. Ted was the chief architect behind the MusicMatch (now Yahoo Music) and Veoh recommendation systems, built fraud-detection systems for ID Analytics (LifeLock), and has issued 24 patents to date. Ted has a PhD in computing science from University of Sheffield. When he's not doing data science, he plays guitar and mandolin. Ted is on Twitter at @ted_dunning.

Ellen Friedman is a consultant and commentator, currently writing mainly about big data topics. She is a committer for the Apache Mahout project and a contributor to the Apache Drill project. With a PhD in Biochemistry, she has years of experience as a research scientist and has written about a variety of technical topics including molecular biology, nontraditional inheritance, and oceanography. Ellen is also co-author of a book of magic-themed cartoons, A Rabbit Under the Hat. Ellen is on Twitter at @Ellen_Friedman.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Acheter D'occasion

état :  Comme neuf
Unread book in perfect condition...
Afficher cet article
EUR 16,05

Autre devise

EUR 17,16 expédition depuis Etats-Unis vers France

Destinations, frais et délais

Acheter neuf

Afficher cet article
EUR 18,65

Autre devise

EUR 1,06 expédition depuis Etats-Unis vers France

Destinations, frais et délais

Résultats de recherche pour Practical Machine Learning: A New Look at Anomaly Detection

Image d'archives

Ellen, M.D. Friedman
Edité par O'Reilly Media, 2014
ISBN 10 : 1491911603 ISBN 13 : 9781491911600
Neuf PAP

Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

PAP. Etat : New. New Book. Shipped from UK. Established seller since 2000. N° de réf. du vendeur WO-9781491911600

Contacter le vendeur

Acheter neuf

EUR 18,65
Autre devise
Frais de port : EUR 1,06
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 3 disponible(s)

Ajouter au panier

Image d'archives

Ted Dunning
Edité par O'Reilly Media, Inc, USA, 2014
ISBN 10 : 1491911603 ISBN 13 : 9781491911600
Neuf Paperback / softback

Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback / softback. Etat : New. New copy - Usually dispatched within 4 working days. 144. N° de réf. du vendeur B9781491911600

Contacter le vendeur

Acheter neuf

EUR 18,22
Autre devise
Frais de port : EUR 4,48
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 3 disponible(s)

Ajouter au panier

Image d'archives

Ellen, M.D. Friedman
Edité par O'Reilly Media, 2014
ISBN 10 : 1491911603 ISBN 13 : 9781491911600
Neuf PAP

Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

PAP. Etat : New. New Book. Shipped from UK. Established seller since 2000. N° de réf. du vendeur WO-9781491911600

Contacter le vendeur

Acheter neuf

EUR 18,23
Autre devise
Frais de port : EUR 4,95
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 3 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Ted Dunning, Ellen Friedman
Edité par O'Reilly Media, US, 2014
ISBN 10 : 1491911603 ISBN 13 : 9781491911600
Neuf Paperback

Vendeur : Rarewaves.com UK, London, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : New. Anomaly detection is the detective work of machine learning: finding the unusual, catching the fraud, discovering strange activity in large and complex datasets. But, unlike Sherlock Holmes, you may not know what the puzzle is, much less what "suspects" you're looking for. This O'Reilly report uses practical examples to explain how the underlying concepts of anomaly detection work. From banking security to natural sciences, medicine, and marketing, anomaly detection has many useful applications in this age of big data. And the search for anomalies will intensify once the Internet of Things spawns even more new types of data. The concepts described in this report will help you tackle anomaly detection in your own project.Use probabilistic models to predict what's normal and contrast that to what you observe Set an adaptive threshold to determine which data falls outside of the normal range, using the t-digest algorithm Establish normal fluctuations in complex systems and signals (such as an EKG) with a more adaptive probablistic model Use historical data to discover anomalies in sporadic event streams, such as web traffic Learn how to use deviations in expected behavior to trigger fraud alerts. N° de réf. du vendeur LU-9781491911600

Contacter le vendeur

Acheter neuf

EUR 21,72
Autre devise
Frais de port : EUR 2,32
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Ted Dunning, Ellen Friedman
Edité par O'Reilly Media, US, 2014
ISBN 10 : 1491911603 ISBN 13 : 9781491911600
Neuf Paperback

Vendeur : Rarewaves.com USA, London, LONDO, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : New. Anomaly detection is the detective work of machine learning: finding the unusual, catching the fraud, discovering strange activity in large and complex datasets. But, unlike Sherlock Holmes, you may not know what the puzzle is, much less what "suspects" you're looking for. This O'Reilly report uses practical examples to explain how the underlying concepts of anomaly detection work. From banking security to natural sciences, medicine, and marketing, anomaly detection has many useful applications in this age of big data. And the search for anomalies will intensify once the Internet of Things spawns even more new types of data. The concepts described in this report will help you tackle anomaly detection in your own project.Use probabilistic models to predict what's normal and contrast that to what you observe Set an adaptive threshold to determine which data falls outside of the normal range, using the t-digest algorithm Establish normal fluctuations in complex systems and signals (such as an EKG) with a more adaptive probablistic model Use historical data to discover anomalies in sporadic event streams, such as web traffic Learn how to use deviations in expected behavior to trigger fraud alerts. N° de réf. du vendeur LU-9781491911600

Contacter le vendeur

Acheter neuf

EUR 24,36
Autre devise
Frais de port : EUR 2,32
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Ted Dunning, Ellen Friedman
Edité par O'Reilly Media, US, 2014
ISBN 10 : 1491911603 ISBN 13 : 9781491911600
Neuf Paperback

Vendeur : Rarewaves USA, OSWEGO, IL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : New. Anomaly detection is the detective work of machine learning: finding the unusual, catching the fraud, discovering strange activity in large and complex datasets. But, unlike Sherlock Holmes, you may not know what the puzzle is, much less what "suspects" you're looking for. This O'Reilly report uses practical examples to explain how the underlying concepts of anomaly detection work. From banking security to natural sciences, medicine, and marketing, anomaly detection has many useful applications in this age of big data. And the search for anomalies will intensify once the Internet of Things spawns even more new types of data. The concepts described in this report will help you tackle anomaly detection in your own project.Use probabilistic models to predict what's normal and contrast that to what you observe Set an adaptive threshold to determine which data falls outside of the normal range, using the t-digest algorithm Establish normal fluctuations in complex systems and signals (such as an EKG) with a more adaptive probablistic model Use historical data to discover anomalies in sporadic event streams, such as web traffic Learn how to use deviations in expected behavior to trigger fraud alerts. N° de réf. du vendeur LU-9781491911600

Contacter le vendeur

Acheter neuf

EUR 24,06
Autre devise
Frais de port : EUR 3,43
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Dunning, Ted; Friedman, Ellen
Edité par O'Reilly Media, 2014
ISBN 10 : 1491911603 ISBN 13 : 9781491911600
Neuf Couverture souple

Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. In. N° de réf. du vendeur ria9781491911600_new

Contacter le vendeur

Acheter neuf

EUR 23,07
Autre devise
Frais de port : EUR 4,63
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 3 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Ted Dunning, Ellen Friedman
Edité par O'Reilly Media, US, 2014
ISBN 10 : 1491911603 ISBN 13 : 9781491911600
Neuf Paperback

Vendeur : Rarewaves USA United, OSWEGO, IL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : New. Anomaly detection is the detective work of machine learning: finding the unusual, catching the fraud, discovering strange activity in large and complex datasets. But, unlike Sherlock Holmes, you may not know what the puzzle is, much less what "suspects" you're looking for. This O'Reilly report uses practical examples to explain how the underlying concepts of anomaly detection work. From banking security to natural sciences, medicine, and marketing, anomaly detection has many useful applications in this age of big data. And the search for anomalies will intensify once the Internet of Things spawns even more new types of data. The concepts described in this report will help you tackle anomaly detection in your own project.Use probabilistic models to predict what's normal and contrast that to what you observe Set an adaptive threshold to determine which data falls outside of the normal range, using the t-digest algorithm Establish normal fluctuations in complex systems and signals (such as an EKG) with a more adaptive probablistic model Use historical data to discover anomalies in sporadic event streams, such as web traffic Learn how to use deviations in expected behavior to trigger fraud alerts. N° de réf. du vendeur LU-9781491911600

Contacter le vendeur

Acheter neuf

EUR 25,78
Autre devise
Frais de port : EUR 3,43
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Ted Dunning
Edité par O?Reilly Media, 2014
ISBN 10 : 1491911603 ISBN 13 : 9781491911600
Neuf Couverture souple Edition originale

Vendeur : Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlande

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. This O'Reilly report uses practical example to explain how the underlying concepts of anomaly detection work. Num Pages: 66 pages, colour illustrations. BIC Classification: UY. Category: (XV) Technical / Manuals. Dimension: 152 x 220 x 4. Weight in Grams: 112. . 2014. 1st Edition. Paperback. . . . . N° de réf. du vendeur V9781491911600

Contacter le vendeur

Acheter neuf

EUR 27,27
Autre devise
Frais de port : EUR 3
De Irlande vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Ted Dunning
Edité par O'Reilly Media, Inc, USA, 2014
ISBN 10 : 1491911603 ISBN 13 : 9781491911600
Neuf Paperback / softback
impression à la demande

Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback / softback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days. N° de réf. du vendeur C9781491911600

Contacter le vendeur

Acheter neuf

EUR 25,08
Autre devise
Frais de port : EUR 6,97
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

There are 13 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre