Articles liés à Optimization Techniques in Statistics

Optimization Techniques in Statistics - Couverture souple

 
9781493307425: Optimization Techniques in Statistics

Synopsis

Statistics help guide us to optimal decisions under uncertainty. A large variety of statistical problems are essentially solutions to optimization problems. The mathematical techniques of optimization are fundamentalto statistical theory and practice. In this book, Jagdish Rustagi provides full-spectrum coverage of these methods, ranging from classical optimization and Lagrange multipliers, to numerical techniques using gradients or direct search, to linear, nonlinear, and dynamic programming using the Kuhn-Tucker conditions or the Pontryagin maximal principle. Variational methods and optimization in function spaces are also discussed, as are stochastic optimization in simulation, including annealing methods. The text features numerous applications, including: Finding maximum likelihood estimatesMarkov decision processesProgramming methods used to optimize monitoring of patients in hospitalsDerivation of the Neyman-Pearson lemmaThe search for optimal designsSimulation of a steel millSuitable as both a reference and a text, this book will be of interest to advanced undergraduate or beginning graduate students in statistics, operations research, management and engineering sciences, and related fields. Most of the material can be covered in one semester by students with a basic background in probability and statistics.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

Présentation de l'éditeur

Statistics help guide us to optimal decisions under uncertainty. A large variety of statistical problems are essentially solutions to optimization problems. The mathematical techniques of optimization are fundamentalto statistical theory and practice. In this book, Jagdish Rustagi provides full-spectrum coverage of these methods, ranging from classical optimization and Lagrange multipliers, to numerical techniques using gradients or direct search, to linear, nonlinear, and dynamic programming using the Kuhn-Tucker conditions or the Pontryagin maximal principle. Variational methods and optimization in function spaces are also discussed, as are stochastic optimization in simulation, including annealing methods. The text features numerous applications, including: Finding maximum likelihood estimatesMarkov decision processesProgramming methods used to optimize monitoring of patients in hospitalsDerivation of the Neyman-Pearson lemmaThe search for optimal designsSimulation of a steel millSuitable as both a reference and a text, this book will be of interest to advanced undergraduate or beginning graduate students in statistics, operations research, management and engineering sciences, and related fields. Most of the material can be covered in one semester by students with a basic background in probability and statistics.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Acheter neuf

Afficher cet article
EUR 136,82

Autre devise

EUR 11,51 expédition depuis Royaume-Uni vers France

Destinations, frais et délais

Autres éditions populaires du même titre

9780126045550: Optimization Techniques in Statistics

Edition présentée

ISBN 10 :  0126045550 ISBN 13 :  9780126045550
Editeur : Academic Press Inc, 1994
Couverture rigide

Résultats de recherche pour Optimization Techniques in Statistics

Image d'archives

Jagdish S. Rustagi
Edité par Academic Press, 2014
ISBN 10 : 1493307428 ISBN 13 : 9781493307425
Neuf Paperback

Vendeur : Revaluation Books, Exeter, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : Brand New. 376 pages. 9.25x6.00x0.85 inches. In Stock. N° de réf. du vendeur zk1493307428

Contacter le vendeur

Acheter neuf

EUR 136,82
Autre devise
Frais de port : EUR 11,51
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier