In this work, the reliability of HfO2 (hafnium oxide) with poly gate and dual metal gate electrode (Ru–Ta alloy, Ru) was investigated. Hard breakdown and soft breakdown, particularly the Weibull slopes, were studied under constant voltage stress. Dynamic stressing has also been used. It was found that the combination of trapping and detrapping contributed to the enhancement of the projected lifetime. The results from the polarity dependence studies showed that the substrate injection exhibited a shorter projected lifetime and worse soft breakdown behavior, compared to the gate injection. The origin of soft breakdown (first breakdown) was studied and the results suggested that the soft breakdown may be due to one layer breakdown in the bilayer structure (HfO2/SiO2: 4 nm/4 nm). Low Weibull slope was in part attributed to the lower barrier height of HfO2 at the interface layer. Interface layer optimization was conducted in terms of mobility, swing, and short channel effect using deep submicron MOSFET devices.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
In this work, the reliability of HfO2 (hafnium oxide) with poly gate and dual metal gate electrode (Ru–Ta alloy, Ru) was investigated. Hard breakdown and soft breakdown, particularly the Weibull slopes, were studied under constant voltage stress. Dynamic stressing has also been used. It was found that the combination of trapping and detrapping contributed to the enhancement of the projected lifetime. The results from the polarity dependence studies showed that the substrate injection exhibited a shorter projected lifetime and worse soft breakdown behavior, compared to the gate injection. The origin of soft breakdown (first breakdown) was studied and the results suggested that the soft breakdown may be due to one layer breakdown in the bilayer structure (HfO2/SiO2: 4 nm/4 nm). Low Weibull slope was in part attributed to the lower barrier height of HfO2 at the interface layer. Interface layer optimization was conducted in terms of mobility, swing, and short channel effect using deep submicron MOSFET devices.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : Bookbot, Prague, Rébublique tchèque
Softcover. Etat : Fine. In this work, the reliability of HfO2 (hafnium oxide) with poly gate and dual metal gate electrode (Ru-Ta alloy, Ru) was investigated. Hard breakdown and soft breakdown, particularly the Weibull slopes, were studied under constant voltage stress. Dynamic stressing has also been used. It was found that the combination of trapping and detrapping contributed to the enhancement of the projected lifetime. The results from the polarity dependence studies showed that the substrate injection exhibited a shorter projected lifetime and worse soft breakdown behavior, compared to the gate injection. The origin of soft breakdown (first breakdown) was studied and the results suggested that the soft breakdown may be due to one layer breakdown in the bilayer structure (HfO2/ 4 nm/4 nm). Low Weibull slope was in part attributed to the lower barrier height of HfO2 at the interface layer. Interface layer optimization was conducted in terms of mobility, swing, and short channel effect using deep submicron MOSFET devices. N° de réf. du vendeur c478ac18-faf8-4589-b29e-54407e387bcd
Quantité disponible : 1 disponible(s)
Vendeur : BookOrders, Russell, IA, Etats-Unis
Soft Cover. Etat : Acceptable. Ex-library with the usual features. Library label on front cover. The interior is clean and tight. Several pages have corner bent. Binding is good. Cover shows light edge wear and has one corner bent. Ex-Library. N° de réf. du vendeur 121985
Quantité disponible : 1 disponible(s)