Book by lvarez Mauricio A Rosasco Lorenzo Lawrence Neil D
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Kernel methods are among the most popular techniques in machine learning. From a regularization theory perspective, they provide a natural choice for the hypotheses space and the regularization functional through the notion of reproducing kernel Hilbert spaces. From a probabilistic theory perspective, they are the key in the context of Gaussian processes, where the kernel function is known as the covariance function. The theory of kernel methods for single-valued functions is well established by now, and indeed there has been a considerable amount of work devoted to designing and learning kernels. More recently there has been an increasing interest in methods that deal with multiple outputs, motivated partly by frameworks like multitask learning. Applications of kernels for vector-valued functions include sensor networks, geostatistics, computer graphics and several more. Kernels for Vector-Valued Functions: A Review looks at different methods to design or learn valid kernel functions for multiple outputs, paying particular attention to the connection between probabilistic and regularization methods. Kernels for Vector-Valued Functions: A Review is aimed at researchers with an interest in the theory and application of kernels for vector-valued functions in areas such as statistics, computer science and engineering. One of its goals is to provide a unified framework and a common terminology for researchers working in machine learning and statistics.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 29,39 expédition depuis Royaume-Uni vers Etats-Unis
Destinations, frais et délaisEUR 3,53 expédition vers Etats-Unis
Destinations, frais et délaisVendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Mar2811580106112
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
PAP. Etat : New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur IQ-9781601985583
Quantité disponible : 15 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 86 pages. 8.98x5.98x0.39 inches. In Stock. N° de réf. du vendeur x-1601985584
Quantité disponible : 2 disponible(s)
Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis
PAP. Etat : New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9781601985583
Quantité disponible : Plus de 20 disponibles
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Paperback / softback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 164. N° de réf. du vendeur C9781601985583
Quantité disponible : Plus de 20 disponibles
Vendeur : Chiron Media, Wallingford, Royaume-Uni
PF. Etat : New. N° de réf. du vendeur 6666-IUK-9781601985583
Quantité disponible : 10 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9781601985583_new
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Kernel methods are among the most popular techniques in machine learning. From a regularization theory perspective, they provide a natural choice for the hypotheses space and the regularization functional through the notion of reproducing kernel Hilbert spaces. From a probabilistic theory perspective, they are the key in the context of Gaussian processes, where the kernel function is known as the covariance function. The theory of kernel methods for single-valued functions is well established by now, and indeed there has been a considerable amount of work devoted to designing and learning kernels. More recently there has been an increasing interest in methods that deal with multiple outputs, motivated partly by frameworks like multitask learning. Applications of kernels for vector-valued functions include sensor networks, geostatistics, computer graphics and several more.Kernels for Vector-Valued Functions: A Review looks at different methods to design or learn valid kernel functions for multiple outputs, paying particular attention to the connection between probabilistic and regularization methods.Kernels for Vector-Valued Functions: A Review is aimed at researchers with an interest in the theory and application of kernels for vector-valued functions in areas such as statistics, computer science and engineering. One of its goals is to provide a unified framework and a common terminology for researchers working in machine learning and statistics. N° de réf. du vendeur 9781601985583
Quantité disponible : 1 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Inhaltsverzeichnis1: Introduction 2: Learning Scalar Outputs with Kernel Methods 3: Learning Multiple Outputs with Kernels Methods 4: Separable Kernels and Sum of Separable Kernels 5: Beyond Separable Kernels 6: Inference and Computation. N° de réf. du vendeur 448142504
Quantité disponible : Plus de 20 disponibles
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
paperback. Etat : Like New. Like New. book. N° de réf. du vendeur ERICA80016019855846
Quantité disponible : 1 disponible(s)