In the spring of 1906, Nobel laureate H.A. Lorentz gave a famous series of lectures at Columbia University. Gathered in one volume and published as The Theory of Electrons in 1909, these talks are still widely read and admired today, more than 100 years later. This collection includes lectures on: . the theory of free electrons . the emission and absorption of heat . the theory of the Zeeman-effect . the propagation of light in a body composed of molecules . the theory of the inverse Zeeman-effect . the optical phenomena in moving bodies Extensive notes, complete with mathematical equations, complement the text, and an extensive index will aid the reader. Dutch physicist HENDRIK ANTOON LORENTZ (1853-1928) shared the Nobel Prize in physics with Pieter Zeeman in 1902. His publications include The Einstein Theory of Relativity: A Concise Statement (1920), Lectures on Theoretical Physics (1927), and Problems of Modern Physics (1927).
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
An excerpt from the beginning of CHAPTER I. GENERAL PRINCIPLES. THEORY OF FREE ELECTRONS:
THE theory of electrons, on which I shall have the honor to lecture before you, already forms so vast a subject, that it will be impossible for me to treat it quite completely. Even if I confine myself to a general review of this youngest branch of the science of electricity, to its more important applications in the domain of light and radiant heat, and to the discussion of some of the difficulties that still remain, I shall have to express myself as concisely as possible, and to use to the best advantage the time at our disposal.
In this, as in every other chapter of mathematical physics, we may distinguish on the one hand the general ideas and hypotheses of a physical nature involved, and on the other the array of mathematical formulae and developments by which these ideas and hypotheses are expressed and worked out. I shall try to throw a clear light on the former part of the subject, leaving the latter part somewhat in the background and omitting all lengthy calculations, which indeed may better be presented in a book than in a lecture.
1. As to its physical basis, the theory of electrons is an offspring of the great theory of electricity to which the names of Faraday and Maxwell will be for ever attached.
You all know this theory of Maxwell, which we may call the general theory of the electromagnetic field, and in which we constantly have in view the state of the matter or the medium by which the field is occupied. While speaking of this state, I must immediately call your attention to the curious fact that, although we never lose sight of it, we need by no means go far in attempting to form an image of it and, in fact, we cannot say much about it. It is true that we may represent to ourselves internal stresses existing in the medium surrounding an electrified body or a magnet, that we may think of electricity as of some substance or fluid, free to move in a conductor and bound to positions of equilibrium in a dielectric, and that we may also conceive a magnetic field as the seat of certain invisible motions, rotations for example around the lines of force. All this has been done by many physicists and Maxwell himself has set the example. Yet, it must not be considered as really necessary; we can develop the theory to a large extent and elucidate a great number of phenomena, without entering upon speculations of this kind. Indeed, on account of the difficulties into which they lead us, there has of late years been a tendency to avoid them altogether and to establish the theory on a few assumptions of a more general nature.
The first of these is, that in an electric field there is a certain state of things which gives rise to a force acting on an electrified body and which may therefore be symbolically represented by the force acting on such a body per unit of charge. This is what we call the electric force, the symbol for a state in the medium about whose nature we shall not venture any further statement. The second assumption relates to a magnetic field. Without thinking of those hidden rotations of which I have just spoken, we can define this by the so called magnetic force, i. e. the force acting on a pole of unit strength.
After having introduced these two fundamental quantities, we try to express their mutual connexions by a set of equations which are then to be applied to a large variety of phenomena. The mathematical relations have thus come to take a very prominent place, so that Hertz even went so far as to say that, after all, the theory of Maxwell is best defined as the system of Maxwell's equations.
This book was originally published prior to 1923, and represents a reproduction of an important historical work, maintaining the same format as the original work. While some publishers have opted to apply OCR (optical character recognition) technology to the process, we believe this leads to sub-optimal results (frequent typographical errors, strange characters and confusing formatting) and does not adequately preserve the historical character of the original artifact. We believe this work is culturally important in its original archival form. While we strive to adequately clean and digitally enhance the original work, there are occasionally instances where imperfections such as blurred or missing pages, poor pictures or errant marks may have been introduced due to either the quality of the original work or the scanning process itself. Despite these occasional imperfections, we have brought it back into print as part of our ongoing global book preservation commitment, providing customers with access to the best possible historical reprints. We appreciate your understanding of these occasional imperfections, and sincerely hope you enjoy seeing the book in a format as close as possible to that intended by the original publisher.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 3,24 expédition vers Etats-Unis
Destinations, frais et délaisEUR 2,28 expédition vers Etats-Unis
Destinations, frais et délaisVendeur : HPB-Red, Dallas, TX, Etats-Unis
paperback. Etat : Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! N° de réf. du vendeur S_446811748
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 5446544-n
Quantité disponible : Plus de 20 disponibles
Vendeur : BargainBookStores, Grand Rapids, MI, Etats-Unis
Paperback or Softback. Etat : New. The Theory of Electrons and Its Applications to the Phenomena of Light and Radiant Heat. Book. N° de réf. du vendeur BBS-9781602063075
Quantité disponible : 5 disponible(s)
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Mar2811580106495
Quantité disponible : Plus de 20 disponibles
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9781602063075
Quantité disponible : Plus de 20 disponibles
Vendeur : About Books, Henderson, NV, Etats-Unis
Paperback. Etat : New condition. Reprint of 1915 corrected edition. New York: Cosimo, 2007. NEW and unread in PERFECT condition. Flat spine. NO chips, tears, creases, rubbing or fading. Bright and shiny. Sharp corners. Pages are fresh, crisp, clean and unmarked - obviously never read. Bound in the original purple wraps, printed in green, white and black. From the publisher: "In the spring of 1906, Nobel laureate H.A. Lorentz gave a famous series of lectures at Columbia University. Gathered in one volume and published as The Theory of Electrons in 1909, these talks are still widely read and admired today, more than 100 years later. This collection includes lectures on: . the theory of free electrons . the emission and absorption of heat . the theory of the Zeeman-effect . the propagation of light in a body composed of molecules . the theory of the inverse Zeeman-effect . the optical phenomena in moving bodies Extensive notes, complete with mathematical equations, complement the text, and an extensive index will aid the reader. Dutch physicist HENDRIK ANTOON LORENTZ (1853-1928) shared the Nobel Prize in physics with Pieter Zeeman in 1902. His publications include The Einstein Theory of Relativity: A Concise Statement (1920), Lectures on Theoretical Physics (1927), and Problems of Modern Physics (1927).". Reprint of 1915 corrected edition. Softcover. New condition. (viii), 343pp. + ads. Great Packaging, Fast Shipping. N° de réf. du vendeur 029778
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 5446544
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis
PAP. Etat : New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9781602063075
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
PAP. Etat : New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9781602063075
Quantité disponible : Plus de 20 disponibles
Vendeur : Rarewaves.com USA, London, LONDO, Royaume-Uni
Paperback. Etat : New. N° de réf. du vendeur LU-9781602063075
Quantité disponible : Plus de 20 disponibles