Articles liés à Applications of Affine and Weyl Geometry

Applications of Affine and Weyl Geometry - Couverture souple

 
9781608457595: Applications of Affine and Weyl Geometry

Synopsis

Pseudo-Riemannian geometry is, to a large extent, the study of the Levi-Civita connection, which is the unique torsion-free connection compatible with the metric structure. There are, however, other affine connections which arise in different contexts, such as conformal geometry, contact structures, Weyl structures, and almost Hermitian geometry. In this book, we reverse this point of view and instead associate an auxiliary pseudo-Riemannian structure of neutral signature to certain affine connections and use this correspondence to study both geometries. We examine Walker structures, Riemannian extensions, and Kähler--Weyl geometry from this viewpoint. This book is intended to be accessible to mathematicians who are not expert in the subject and to students with a basic grounding in differential geometry. Consequently, the first chapter contains a comprehensive introduction to the basic results and definitions we shall need---proofs are included of many of these results to make it as self-contained as possible. Para-complex geometry plays an important role throughout the book and consequently is treated carefully in various chapters, as is the representation theory underlying various results. It is a feature of this book that, rather than as regarding para-complex geometry as an adjunct to complex geometry, instead, we shall often introduce the para-complex concepts first and only later pass to the complex setting. The second and third chapters are devoted to the study of various kinds of Riemannian extensions that associate to an affine structure on a manifold a corresponding metric of neutral signature on its cotangent bundle. These play a role in various questions involving the spectral geometry of the curvature operator and homogeneous connections on surfaces. The fourth chapter deals with Kähler--Weyl geometry, which lies, in a certain sense, midway between affine geometry and Kähler geometry. Another feature of the book is that we have tried wherever possible to find the original references in the subject for possible historical interest. Thus, we have cited the seminal papers of Levi-Civita, Ricci, Schouten, and Weyl, to name but a few exemplars. We have also given different proofs of various results than those that are given in the literature, to take advantage of the unified treatment of the area given herein. Table of Contents: Basic Notions and Concepts / The Geometry of Deformed Riemannian Extensions / The Geometry of Modified Riemannian Extensions / (para)-Kähler--Weyl Manifolds

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

Acheter D'occasion

état :  Assez bon
Fast Shipping - Safe and Secure...
Afficher cet article
EUR 14,78

Autre devise

EUR 64,03 expédition depuis Etats-Unis vers France

Destinations, frais et délais

Autres éditions populaires du même titre

9783031012778: Applications of Affine and Weyl Geometry

Edition présentée

ISBN 10 :  3031012771 ISBN 13 :  9783031012778
Editeur : Springer, 2013
Couverture souple

Résultats de recherche pour Applications of Affine and Weyl Geometry

Image d'archives

GarcÃa-RÃo, Eduardo,Gilkey, Peter,Nikcevic, Stana,Vázquez-Lorenzo, Ramà n
Edité par Morgan & Claypool Publishers, 2013
ISBN 10 : 1608457591 ISBN 13 : 9781608457595
Ancien ou d'occasion paperback

Vendeur : suffolkbooks, Center moriches, NY, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

paperback. Etat : Very Good. Fast Shipping - Safe and Secure 7 days a week! N° de réf. du vendeur 3TWOWA001LR8

Contacter le vendeur

Acheter D'occasion

EUR 14,78
Autre devise
Frais de port : EUR 64,03
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 9 disponible(s)

Ajouter au panier