“We finally have the definitive treatise on PyTorch! It covers the basics and abstractions in great detail. I hope this book becomes your extended reference document.” —Soumith Chintala, co-creator of PyTorch
Key Features
Written by PyTorch’s creator and key contributors
Develop deep learning models in a familiar Pythonic way
Use PyTorch to build an image classifier for cancer detection
Diagnose problems with your neural network and improve training with data augmentation
Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.
About The Book
Every other day we hear about new ways to put deep learning to good use: improved medical imaging, accurate credit card fraud detection, long range weather forecasting, and more.
PyTorch puts these superpowers in your hands. Instantly familiar to anyone who knows Python data tools like NumPy and Scikit-learn, PyTorch simplifies deep learning without sacrificing advanced features. It’s great for building quick models, and it scales smoothly from laptop to enterprise.
Deep Learning with PyTorch teaches you to create deep learning and neural network systems with PyTorch. This practical book gets you to work right away building a tumor image classifier from scratch. After covering the basics, you’ll learn best practices for the entire deep learning pipeline, tackling advanced projects as your PyTorch skills become more sophisticated. All code samples are easy to explore in downloadable Jupyter notebooks.
What You Will Learn
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Eli Stevens has worked in Silicon Valley for the past 15 years as a software engineer, and the past 7 years as Chief Technical Officer of a startup making medical device software.
Luca Antiga is co-founder and CEO of an AI engineering company located in Bergamo, Italy, and a regular contributor to PyTorch.
Thomas Viehmann is a Machine Learning and PyTorch speciality trainer and consultant based in Munich, Germany and a PyTorch core developer.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 21,58 expédition depuis Etats-Unis vers France
Destinations, frais et délaisEUR 6,15 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisVendeur : Bookmans, Tucson, AZ, Etats-Unis
paperback. Etat : Good. . Satisfaction 100% guaranteed. N° de réf. du vendeur mon0002691066
Quantité disponible : 1 disponible(s)
Vendeur : medimops, Berlin, Allemagne
Etat : as new. Wie neu/Like new. N° de réf. du vendeur M01617295264-N
Quantité disponible : 1 disponible(s)
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
PAP. Etat : New. New Book. Shipped from UK. Established seller since 2000. N° de réf. du vendeur PB-9781617295263
Quantité disponible : 15 disponible(s)
Vendeur : Speedyhen, London, Royaume-Uni
Etat : NEW. N° de réf. du vendeur NW9781617295263
Quantité disponible : 19 disponible(s)
Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis
PAP. Etat : New. New Book. Shipped from UK. Established seller since 2000. N° de réf. du vendeur IB-9781617295263
Quantité disponible : 2 disponible(s)
Vendeur : SecondSale, Montgomery, IL, Etats-Unis
Etat : Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc. N° de réf. du vendeur 00082283049
Quantité disponible : 2 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9781617295263_new
Quantité disponible : 19 disponible(s)
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9781617295263
Quantité disponible : 10 disponible(s)
Vendeur : Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlande
Etat : New. 2020. 1st Edition. Paperback. . . . . . N° de réf. du vendeur V9781617295263
Quantité disponible : 19 disponible(s)
Vendeur : Rarewaves USA, OSWEGO, IL, Etats-Unis
Paperback. Etat : New. Every other day we hear about new ways to put deep learning to good use: improved medical imaging, accurate credit card fraud detection, long range weather forecasting, and more. PyTorch puts these superpowers in your hands, providing a comfortable Python experience that gets you started quickly and then grows with you as you, and your deep learning skills, become more sophisticated. Deep Learning with PyTorch teaches you how to implement deep learning algorithms with Python and PyTorch. This book takes you into a fascinating case study: building an algorithm capable of detecting malignant lung tumors using CT scans. As the authors guide you through this real example, you'll discover just how effective and fun PyTorch can be. Key features . Using the PyTorch tensor API . Understanding automatic differentiation in PyTorch . Training deep neural networks . Monitoring training and visualizing results . Interoperability with NumPy Audience Written for developers with some knowledge of Python as well as basic linear algebra skills. Some understanding of deep learning will be helpful, however no experience with PyTorch or other deep learning frameworks is required. About the technology PyTorch is a machine learning framework with a strong focus on deep neural networks. Because it emphasizes GPU-based acceleration, PyTorch performs exceptionally well on readily-available hardware and scales easily to larger systems. Eli Stevens has worked in Silicon Valley for the past 15 years as a software engineer, and the past 7 years as Chief Technical Officer of a startup making medical device software. Luca Antiga is co-founder and CEO of an AI engineering company located in Bergamo, Italy, and a regular contributor to PyTorch. N° de réf. du vendeur LU-9781617295263
Quantité disponible : 10 disponible(s)