Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Danil Zburivsky has over 10 years experience designing and supporting large-scale data infrastructure for enterprises across the globe.
Lynda Partner is the VP of Analytics-as-a-Service at Pythian, and has been on the business side of data for over 20 years.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Gratuit expédition vers Etats-Unis
Destinations, frais et délaisGratuit expédition vers Etats-Unis
Destinations, frais et délaisVendeur : BooksRun, Philadelphia, PA, Etats-Unis
Paperback. Etat : Very Good. It's a well-cared-for item that has seen limited use. The item may show minor signs of wear. All the text is legible, with all pages included. It may have slight markings and/or highlighting. N° de réf. du vendeur 1617296449-8-1
Quantité disponible : 1 disponible(s)
Vendeur : HPB-Red, Dallas, TX, Etats-Unis
Paperback. Etat : Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! N° de réf. du vendeur S_444925688
Quantité disponible : 1 disponible(s)
Vendeur : Goodwill Books, Hillsboro, OR, Etats-Unis
Etat : good. Signs of wear and consistent use. N° de réf. du vendeur 3IIT4R0048BV_ns
Quantité disponible : 1 disponible(s)
Vendeur : Better World Books: West, Reno, NV, Etats-Unis
Etat : Good. Used book that is in clean, average condition without any missing pages. N° de réf. du vendeur 49994351-6
Quantité disponible : 1 disponible(s)
Vendeur : Better World Books Ltd, Dunfermline, Royaume-Uni
Etat : Very Good. Ships from the UK. Former library book; may include library markings. Used book that is in excellent condition. May show signs of wear or have minor defects. N° de réf. du vendeur 54311474-20
Quantité disponible : 1 disponible(s)
Vendeur : INDOO, Avenel, NJ, Etats-Unis
Etat : As New. Unread copy in mint condition. N° de réf. du vendeur SS9781617296444
Quantité disponible : Plus de 20 disponibles
Vendeur : INDOO, Avenel, NJ, Etats-Unis
Etat : New. Brand New. N° de réf. du vendeur 9781617296444
Quantité disponible : Plus de 20 disponibles
Vendeur : Rarewaves USA, OSWEGO, IL, Etats-Unis
Paperback. Etat : New. Centralized data warehouses, the long-time defacto standard for housing data for analytics, are rapidly giving way to multi-faceted cloud data platforms. Companies that embrace modern cloud data platforms benefit from an integrated view of their business using all of their data and can take advantage of advanced analytic practices to drive predictions and as yet unimagined data services. Designing Cloud Data Platforms is an hands-on guide to envisioning and designing a modern scalable data platform that takes full advantage of the flexibility of the cloud. As you read, you'll learn the core components of a cloud data platform design, along with the role of key technologies like Spark and Kafka Streams. You'll also explore setting up processes to manage cloud-based data, keep it secure, and using advanced analytic and BI tools to analyse it. about the technologyAccess to affordable, dependable, serverless cloud services has revolutionized the way organizations can approach data management, and companies both big and small are raring to migrate to the cloud. But without a properly designed data platform, data in the cloud can remain just as siloed and inaccessible as it is today for most organizations. Designing Cloud Data Platforms lays out the principles of a well-designed platform that uses the scalable resources of the public cloud to manage all of an organization's data, and present it as useful business insights. about the bookIn Designing Cloud Data Platforms, you'll learn how to integrate data from multiple sources into a single, cloud-based, modern data platform. Drawing on their real-world experiences designing cloud data platforms for dozens of organizations, cloud data experts Danil Zburivsky and Lynda Partner take you through a six-layer approach to creating cloud data platforms that maximizes flexibility and manageability and reduces costs. Starting with foundational principles, you'll learn how to get data into your platform from different databases, files, and APIs, the essential practices for organizing and processing that raw data, and how to best take advantage of the services offered by major cloud vendors. As you progress past the basics you'll take a deep dive into advanced topics to get the most out of your data platform, including real-time data management, machine learning analytics, schema management, and more. what's inside The tools of different public cloud for implementing data platformsBest practices for managing structured and unstructured data setsMachine learning tools that can be used on top of the cloudCost optimization techniques about the readerFor data professionals familiar with the basics of cloud computing and distributed data processing systems like Hadoop and Spark. about the authors Danil Zburivsky has over 10 years experience designing and supporting large-scale data infrastructure for enterprises across the globe. Lynda Partner is the VP. N° de réf. du vendeur LU-9781617296444
Quantité disponible : 10 disponible(s)
Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis
Paperback. Etat : new. Paperback. Centralized data warehouses, the long-time defacto standard for housing data for analytics, are rapidly giving way to multi-faceted cloud data platforms. Companies that embrace modern cloud data platforms benefit from an integrated view of their business using all of their data and can take advantage of advanced analytic practices to drive predictions and as yet unimagined data services. Designing Cloud Data Platforms is an hands-on guide to envisioning and designing a modern scalable data platform that takes full advantage of the flexibility of the cloud. As you read, youll learn the core components of a cloud data platform design, along with the role of key technologies like Spark and Kafka Streams. Youll also explore setting up processes to manage cloud-based data, keep it secure, and using advanced analytic and BI tools to analyse it. about the technologyAccess to affordable, dependable, serverless cloud services has revolutionized the way organizations can approach data management, and companies both big and small are raring to migrate to the cloud. But without a properly designed data platform, data in the cloud can remain just as siloed and inaccessible as it is today for most organizations. Designing Cloud Data Platforms lays out the principles of a well-designed platform that uses the scalable resources of the public cloud to manage all of an organization's data, and present it as useful business insights. about the bookIn Designing Cloud Data Platforms, youll learn how to integrate data from multiple sources into a single, cloud-based, modern data platform. Drawing on their real-world experiences designing cloud data platforms for dozens of organizations, cloud data experts Danil Zburivsky and Lynda Partner take you through a six-layer approach to creating cloud data platforms that maximizes flexibility and manageability and reduces costs. Starting with foundational principles, youll learn how to get data into your platform from different databases, files, and APIs, the essential practices for organizing and processing that raw data, and how to best take advantage of the services offered by major cloud vendors. As you progress past the basics youll take a deep dive into advanced topics to get the most out of your data platform, including real-time data management, machine learning analytics, schema management, and more. what's inside The tools of different public cloud for implementing data platformsBest practices for managing structured and unstructured data setsMachine learning tools that can be used on top of the cloudCost optimization techniques about the readerFor data professionals familiar with the basics of cloud computing and distributed data processing systems like Hadoop and Spark. about the authors Danil Zburivsky has over 10 years experience designing and supporting large-scale data infrastructure for enterprises across the globe. Lynda Partner is the VP of Analytics-as-a-Service at Pythian, and has been on the business side of data for over 20 years. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9781617296444
Quantité disponible : 1 disponible(s)
Vendeur : Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlande
Etat : New. 2021. 1st Edition. Paperback. . . . . . N° de réf. du vendeur V9781617296444
Quantité disponible : 15 disponible(s)