Articles liés à MLOps Engineering at Scale

Osipov, Carl MLOps Engineering at Scale ISBN 13 : 9781617297762

MLOps Engineering at Scale - Couverture souple

 
9781617297762: MLOps Engineering at Scale

Synopsis

Dodge costly and time-consuming infrastructure tasks, and rapidly bring your machine learning models to production with MLOps and pre-built serverless tools!

In MLOps Engineering at Scale you will learn:

Extracting, transforming, and loading datasets
Querying datasets with SQL
Understanding automatic differentiation in PyTorch
Deploying model training pipelines as a service endpoint
Monitoring and managing your pipeline's life cycle
Measuring performance improvements

MLOps Engineering at Scale shows you how to put machine learning into production efficiently by using pre-built services from AWS and other cloud vendors. You'll learn how to rapidly create flexible and scalable machine learning systems without laboring over time-consuming operational tasks or taking on the costly overhead of physical hardware. Following a real-world use case for calculating taxi fares, you will engineer an MLOps pipeline for a PyTorch model using AWS server-less capabilities.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
A production-ready machine learning system includes efficient data pipelines, integrated monitoring, and means to scale up and down based on demand. Using cloud-based services to implement ML infrastructure reduces development time and lowers hosting costs. Serverless MLOps eliminates the need to build and maintain custom infrastructure, so you can concentrate on your data, models, and algorithms.

About the book
MLOps Engineering at Scale teaches you how to implement efficient machine learning systems using pre-built services from AWS and other cloud vendors. This easy-to-follow book guides you step-by-step as you set up your serverless ML infrastructure, even if you've never used a cloud platform before. You'll also explore tools like PyTorch Lightning, Optuna, and MLFlow that make it easy to build pipelines and scale your deep learning models in production.

What's inside

Reduce or eliminate ML infrastructure management
Learn state-of-the-art MLOps tools like PyTorch Lightning and MLFlow
Deploy training pipelines as a service endpoint
Monitor and manage your pipeline's life cycle
Measure performance improvements

About the reader
Readers need to know Python, SQL, and the basics of machine learning. No cloud experience required.

About the author
Carl Osipov implemented his first neural net in 2000 and has worked on deep learning and machine learning at Google and IBM.

Table of Contents

PART 1 - MASTERING THE DATA SET
1 Introduction to serverless machine learning
2 Getting started with the data set
3 Exploring and preparing the data set
4 More exploratory data analysis and data preparation
PART 2 - PYTORCH FOR SERVERLESS MACHINE LEARNING
5 Introducing PyTorch: Tensor basics
6 Core PyTorch: Autograd, optimizers, and utilities
7 Serverless machine learning at scale
8 Scaling out with distributed training
PART 3 - SERVERLESS MACHINE LEARNING PIPELINE
9 Feature selection
10 Adopting PyTorch Lightning
11 Hyperparameter optimization
12 Machine learning pipeline

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Carl Osipov has been working in the information technology industry since 2001, with a focus on projects in big data analytics and machine learning in multi-core, distributed systems, such as service-oriented architecture and cloud computing platforms. While at IBM, Carl helped IBM Software Group to shape its strategy around the use of Docker and other container-based technologies for serverless cloud computing using IBM Cloud and Amazon Web Services. At Google, Carl learned from the world's foremost experts in machine learning and helped manage the company's efforts to democratize artificial intelligence with Google Cloud and TensorFlow. Carl is an author of over 20 articles in professional, trade, and academic journals; an inventor with six patents at USPTO; and the holder of three corporate technology awards from IBM.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Acheter D'occasion

Afficher cet article
EUR 61,36

Autre devise

Gratuit expédition depuis Australie vers France

Destinations, frais et délais

Acheter neuf

Afficher cet article
EUR 50,39

Autre devise

EUR 3,44 expédition depuis Etats-Unis vers France

Destinations, frais et délais

Résultats de recherche pour MLOps Engineering at Scale

Image fournie par le vendeur

Carl Osipov
Edité par Manning Publications, US, 2022
ISBN 10 : 1617297763 ISBN 13 : 9781617297762
Neuf Paperback

Vendeur : Rarewaves USA, OSWEGO, IL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : New. Deploying a machine learning model into a fully realized production system usually requires painstaking work by an operations team creating and managing custom servers.   Cloud Native Machine Learning  helps you bridge that gap by using the pre-built services provided by cloud platforms like Azure and AWS to assemble your ML system's infrastructure. Following a real-world use case for calculating taxi fares, you'll learn how to get a serverless ML pipeline up and running using AWS services. Clear and detailed tutorials show you how to develop reliable, flexible, and scalable machine learning systems without time-consuming management tasks or the costly overheads of physical hardware. about the technologyYour new machine learning model is ready to put into production, and suddenly all your time is taken up by setting up your server infrastructure. Serverless machine learning offers a productivity-boosting alternative. It eliminates the time-consuming operations tasks from your machine learning lifecycle, letting out-of-the-box cloud services take over launching, running, and managing your ML systems. With the serverless capabilities of major cloud vendors handling your infrastructure, you're free to focus on tuning and improving your models. about the book Cloud Native Machine Learning  is a guide to bringing your experimental machine learning code to production using serverless capabilities from major cloud providers. You'll start with best practices for your datasets, learning to bring VACUUM data-quality principles to your projects, and ensure that your datasets can be reproducibly sampled. Next, you'll learn to implement machine learning models with PyTorch, discovering how to scale up your models in the cloud and how to use PyTorch Lightning for distributed ML training. Finally, you'll tune and engineer your serverless machine learning pipeline for scalability, elasticity, and ease of monitoring with the built-in notification tools of your cloud platform. When you're done, you'll have the tools to easily bridge the gap between ML models and a fully functioning production system.   what's inside Extracting, transforming, and loading datasetsQuerying datasets with SQLUnderstanding automatic differentiation in PyTorchDeploying trained models and pipelines as a service endpointMonitoring and managing your pipeline's life cycleMeasuring performance improvements about the readerFor data professionals with intermediate Python skills and basic familiarity with machine learning. No cloud experience required. about the author Carl Osipov  has spent over 15 years working on big data processing and machine learning in multi-core, distributed systems, such as service-oriented architecture and cloud computing platforms. While at IBM, Carl helped IBM Software Group to shape its strategy around the use of Docker and other container-based technologies for serverless computing using IBM Cloud and Amazon Web Services. N° de réf. du vendeur LU-9781617297762

Contacter le vendeur

Acheter neuf

EUR 50,39
Autre devise
Frais de port : EUR 3,44
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 10 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Carl Osipov
Edité par Manning Publications, US, 2022
ISBN 10 : 1617297763 ISBN 13 : 9781617297762
Neuf Paperback

Vendeur : Rarewaves USA United, OSWEGO, IL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : New. Deploying a machine learning model into a fully realized production system usually requires painstaking work by an operations team creating and managing custom servers.   Cloud Native Machine Learning  helps you bridge that gap by using the pre-built services provided by cloud platforms like Azure and AWS to assemble your ML system's infrastructure. Following a real-world use case for calculating taxi fares, you'll learn how to get a serverless ML pipeline up and running using AWS services. Clear and detailed tutorials show you how to develop reliable, flexible, and scalable machine learning systems without time-consuming management tasks or the costly overheads of physical hardware. about the technologyYour new machine learning model is ready to put into production, and suddenly all your time is taken up by setting up your server infrastructure. Serverless machine learning offers a productivity-boosting alternative. It eliminates the time-consuming operations tasks from your machine learning lifecycle, letting out-of-the-box cloud services take over launching, running, and managing your ML systems. With the serverless capabilities of major cloud vendors handling your infrastructure, you're free to focus on tuning and improving your models. about the book Cloud Native Machine Learning  is a guide to bringing your experimental machine learning code to production using serverless capabilities from major cloud providers. You'll start with best practices for your datasets, learning to bring VACUUM data-quality principles to your projects, and ensure that your datasets can be reproducibly sampled. Next, you'll learn to implement machine learning models with PyTorch, discovering how to scale up your models in the cloud and how to use PyTorch Lightning for distributed ML training. Finally, you'll tune and engineer your serverless machine learning pipeline for scalability, elasticity, and ease of monitoring with the built-in notification tools of your cloud platform. When you're done, you'll have the tools to easily bridge the gap between ML models and a fully functioning production system.   what's inside Extracting, transforming, and loading datasetsQuerying datasets with SQLUnderstanding automatic differentiation in PyTorchDeploying trained models and pipelines as a service endpointMonitoring and managing your pipeline's life cycleMeasuring performance improvements about the readerFor data professionals with intermediate Python skills and basic familiarity with machine learning. No cloud experience required. about the author Carl Osipov  has spent over 15 years working on big data processing and machine learning in multi-core, distributed systems, such as service-oriented architecture and cloud computing platforms. While at IBM, Carl helped IBM Software Group to shape its strategy around the use of Docker and other container-based technologies for serverless computing using IBM Cloud and Amazon Web Services. N° de réf. du vendeur LU-9781617297762

Contacter le vendeur

Acheter neuf

EUR 51,81
Autre devise
Frais de port : EUR 3,44
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 10 disponible(s)

Ajouter au panier

Image d'archives

Osipov, Carl
Edité par Manning, 2022
ISBN 10 : 1617297763 ISBN 13 : 9781617297762
Neuf Couverture souple

Vendeur : Romtrade Corp., STERLING HEIGHTS, MI, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. N° de réf. du vendeur ABNR-28866

Contacter le vendeur

Acheter neuf

EUR 55,69
Autre devise
Frais de port : Gratuit
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 5 disponible(s)

Ajouter au panier

Image d'archives

Osipov, Carl
Edité par Manning, 2022
ISBN 10 : 1617297763 ISBN 13 : 9781617297762
Neuf Couverture souple

Vendeur : SMASS Sellers, IRVING, TX, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Brand New Original US Edition. Customer service! Satisfaction Guaranteed. N° de réf. du vendeur ASNT3-28866

Contacter le vendeur

Acheter neuf

EUR 57,49
Autre devise
Frais de port : Gratuit
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 5 disponible(s)

Ajouter au panier

Image d'archives

0
Edité par Manning, 2022
ISBN 10 : 1617297763 ISBN 13 : 9781617297762
Neuf Couverture souple

Vendeur : Basi6 International, Irving, TX, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. N° de réf. du vendeur ABEJUNE24-11667

Contacter le vendeur

Acheter neuf

EUR 55,53
Autre devise
Frais de port : EUR 2,88
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Osipov, Carl
Edité par Manning, 2022
ISBN 10 : 1617297763 ISBN 13 : 9781617297762
Ancien ou d'occasion Couverture souple

Vendeur : ALLBOOKS1, Direk, SA, Australie

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

N° de réf. du vendeur SHUB11667

Contacter le vendeur

Acheter D'occasion

EUR 61,36
Autre devise
Frais de port : Gratuit
De Australie vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Osipov, Carl
Edité par Manning, 2022
ISBN 10 : 1617297763 ISBN 13 : 9781617297762
Neuf Couverture souple

Vendeur : Books Puddle, New York, NY, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 26389786231

Contacter le vendeur

Acheter neuf

EUR 53,84
Autre devise
Frais de port : EUR 7,73
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Osipov, Carl
Edité par Manning, 2022
ISBN 10 : 1617297763 ISBN 13 : 9781617297762
Neuf Couverture souple

Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 18389786237

Contacter le vendeur

Acheter neuf

EUR 55,29
Autre devise
Frais de port : EUR 7,95
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Osipov, Carl
Edité par Manning, 2022
ISBN 10 : 1617297763 ISBN 13 : 9781617297762
Neuf Couverture souple

Vendeur : Majestic Books, Hounslow, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 390862248

Contacter le vendeur

Acheter neuf

EUR 54,01
Autre devise
Frais de port : EUR 10,25
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Osipov, Carl
Edité par Manning, 2022
ISBN 10 : 1617297763 ISBN 13 : 9781617297762
Neuf Couverture souple

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 42620453-n

Contacter le vendeur

Acheter neuf

EUR 48,05
Autre devise
Frais de port : EUR 17,17
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 18 disponible(s)

Ajouter au panier

There are 10 autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre