Machine Learning Engineering in Action lays out an approach to building deployable, maintainable production machine learning systems. You will adopt software development standards that deliver better code management, and make it easier to test, scale, and even reuse your machine learning code!
You will learn how to plan and scope your project, manage cross-team logistics that avoid fatal communication failures, and design your code's architecture for improved resilience. You will even discover when not to use machine learning―and the alternative approaches that might be cheaper and more effective. When you're done working through this toolbox guide, you will be able to reliably deliver cost-effective solutions for organizations big and small alike.
Following established processes and methodology maximizes the likelihood that your machine learning projects will survive and succeed for the long haul. By adopting standard, reproducible practices, your projects will be maintainable over time and easy for new team members to understand and adapt.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 2,27 expédition vers Etats-Unis
Destinations, frais et délaisEUR 2,27 expédition vers Etats-Unis
Destinations, frais et délaisVendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 43786890-n
Quantité disponible : Plus de 20 disponibles
Vendeur : Follow Books, SOUTHFIELD, MI, Etats-Unis
Etat : New. New Book. N° de réf. du vendeur 1617298719-TUX
Quantité disponible : 3 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 43786890
Quantité disponible : Plus de 20 disponibles
Vendeur : INDOO, Avenel, NJ, Etats-Unis
Etat : As New. Unread copy in mint condition. N° de réf. du vendeur SS9781617298714
Quantité disponible : Plus de 20 disponibles
Vendeur : INDOO, Avenel, NJ, Etats-Unis
Etat : New. Brand New. N° de réf. du vendeur 9781617298714
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis
PAP. Etat : New. New Book. Shipped from UK. Established seller since 2000. N° de réf. du vendeur PB-9781617298714
Quantité disponible : 15 disponible(s)
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
PAP. Etat : New. New Book. Shipped from UK. Established seller since 2000. N° de réf. du vendeur PB-9781617298714
Quantité disponible : 15 disponible(s)
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 43786890-n
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 43786890
Quantité disponible : Plus de 20 disponibles
Vendeur : Grand Eagle Retail, Mason, OH, Etats-Unis
Paperback. Etat : new. Paperback. Machine Learning Engineering in Action lays out an approach to building deployable, maintainable production machine learning systems. You will adopt software development standards that deliver better code management, and make it easier to test, scale, and even reuse your machine learning code! You will learn how to plan and scope your project, manage cross-team logistics that avoid fatal communication failures, and design your code's architecture for improved resilience. You will even discover when not to use machine learningand the alternative approaches that might be cheaper and more effective. When you're done working through this toolbox guide, you will be able to reliably deliver cost-effective solutions for organizations big and small alike. Following established processes and methodology maximizes the likelihood that your machine learning projects will survive and succeed for the long haul. By adopting standard, reproducible practices, your projects will be maintainable over time and easy for new team members to understand and adapt. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9781617298714
Quantité disponible : 1 disponible(s)