There's a big gap between running machine learning and data processes as prototypes, and deploying them to a production cloud environment. Data Engineering on Azure reveals the architectural, operational, and data management techniques that power cloud-based data infrastructure built on the Microsoft Azure platform.
Data Engineering on Azure teaches you to build a scalable and robust data platform to industry-leading standards. All examples are based on the production big data platform that powers Microsoft's customer growth operations. You'll learn techniques and best practices that author Vlad Riscutia and his team use on a daily basis, including automation and DevOps, running a reliable machine learning pipeline, and managing your data inventory. Examples are illustrated with Azure. The patterns and techniques are transferable to other cloud platforms.
About the Technology
Build secure, stable data platforms that can scale to loads of any size. When a project moves from the lab into production, you need confidence that it can stand up to real-world challenges. This book teaches you to design and implement cloud-based data infrastructure that you can easily monitor, scale, and modify.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Vlad Riscutia is a software architect and data engineer at Microsoft on the Customer Growth and Analytics team.
About the book.
In Data Engineering on Azure you'll learn the skills you need to build and maintain big data platforms in massive enterprises. This invaluable guide includes clear, practical guidance for setting up infrastructure, orchestration, workloads, and governance. As you go, you'll set up efficient machine learning pipelines, and then master time-saving automation and DevOps solutions. The Azure-based examples are easy to reproduce on other cloud platforms.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Gratuit expédition vers Etats-Unis
Destinations, frais et délaisGratuit expédition vers Etats-Unis
Destinations, frais et délaisVendeur : BooksRun, Philadelphia, PA, Etats-Unis
Paperback. Etat : As New. It's a preowned item in almost perfect condition. It has no visible cosmetic imperfections. May come without any shrink wrap; pages are clean and not marred by notes or folds of any kind. N° de réf. du vendeur 1617298921-10-1
Quantité disponible : 2 disponible(s)
Vendeur : INDOO, Avenel, NJ, Etats-Unis
Etat : As New. Unread copy in mint condition. N° de réf. du vendeur SS9781617298929
Quantité disponible : Plus de 20 disponibles
Vendeur : INDOO, Avenel, NJ, Etats-Unis
Etat : New. Brand New. N° de réf. du vendeur 9781617298929
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 42649848-n
Quantité disponible : 1 disponible(s)
Vendeur : Rarewaves USA, OSWEGO, IL, Etats-Unis
Paperback. Etat : New. There's a big gap between running machine learning and data processes as prototypes, and deploying them to a production cloud environment. Data Engineering on Azure reveals the architectural, operational, and data management techniques that power cloud-based data infrastructure built on the Microsoft Azure platform. Data Engineering on Azure teaches you to build a scalable and robust data platform to industry-leading standards. All examples are based on the production big data platform that powers Microsoft's customer growth operations. You'll learn techniques and best practices that author Vlad Riscutia and his team use on a daily basis, including automation and DevOps, running a reliable machine learning pipeline, and managing your data inventory. Examples are illustrated with Azure. The patterns and techniques are transferable to other cloud platforms. About the TechnologyBuild secure, stable data platforms that can scale to loads of any size. When a project moves from the lab into production, you need confidence that it can stand up to real-world challenges. This book teaches you to design and implement cloud-based data infrastructure that you can easily monitor, scale, and modify. N° de réf. du vendeur LU-9781617298929
Quantité disponible : 10 disponible(s)
Vendeur : Basi6 International, Irving, TX, Etats-Unis
Etat : Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. N° de réf. du vendeur ABEJUNE24-15930
Quantité disponible : 1 disponible(s)
Vendeur : Romtrade Corp., STERLING HEIGHTS, MI, Etats-Unis
Etat : New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. N° de réf. du vendeur ABNR-29837
Quantité disponible : 5 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. N° de réf. du vendeur 26384597204
Quantité disponible : 2 disponible(s)
Vendeur : Grand Eagle Retail, Mason, OH, Etats-Unis
Paperback. Etat : new. Paperback. There's a big gap between running machine learning and data processes as prototypes, and deploying them to a production cloud environment. Data Engineering on Azure reveals the architectural, operational, and data management techniques that power cloud-based data infrastructure built on the Microsoft Azure platform. Data Engineering on Azure teaches you to build a scalable and robust data platform to industry-leading standards. All examples are based on the production big data platform that powers Microsoft's customer growth operations. You'll learn techniques and best practices that author Vlad Riscutia and his team use on a daily basis, including automation and DevOps, running a reliable machine learning pipeline, and managing your data inventory. Examples are illustrated with Azure. The patterns and techniques are transferable to other cloud platforms. About the TechnologyBuild secure, stable data platforms that can scale to loads of any size. When a project moves from the lab into production, you need confidence that it can stand up to real-world challenges. This book teaches you to design and implement cloud-based data infrastructure that you can easily monitor, scale, and modify. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9781617298929
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 42649848
Quantité disponible : 1 disponible(s)