The exquisite binding specificity of antibodies has made them valuable tools from the laboratory to the clinic. Since the description of the murine hybridoma technology by Köhler and Milstein in 1975, a phenomenal number of mo- clonal antibodies have been generated against a diverse array of targets. Some of these have become indispensable reagents in biomedical research, while others were developed for novel therapeutic applications. The attractiveness of an- bodies in this regard is obvious—high target specificity, adaptability to a wide range of disease states, and the potential ability to direct the host’s immune s- tem for a therapeutic response. The initial excitement in finding Paul Ehrlich’s “magic bullet,” however, was met with widespread disappointment when it was demonstrated that murine antibodies frequently elicit the human anti-murine an- body (HAMA) response, thus rendering them ineffective and potentially unsafe in humans. Despite this setback, advances in recombinant DNA techniques over the last 15–20 years have empowered the engineering of recombinant antibodies with desired characteristics, including properties to avoid HAMA. The ability to p- duce bulk quantities of recombinant proteins from bacterial fermentation also fueled the design of numerous creative antibody constructs. To date, the United States Food and Drug Administration has approved more than 10 recombinant antibodies for human use, and hundreds more are in the development pipeline. The recent explosion in genomic and proteomic information appears ready to deliver many more disease targets amenable to antibody-based therapy.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
A core collection of diverse cutting-edge techniques for the generation, expression, optimization, and characterization of recombinant antibodies. Readily reproducible protocols for lead generation range from the cloning of human immunoglobulin genes to the selection and generation of human recombinant antibodies by humanization approaches, molecular display technologies and transgenic animals. Procedures are also described on restructuring antibody leads into monovalent, multivalent, and bispecific binding fragments for a wide variety of in vivo applications. State-of-the-art technologies are described for the characterization of antigen-binding affinity and specificity with novel applications in radioimmunotargeting, cancer immunotherapy, drug abuse, and proteomics.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The exquisite binding specificity of antibodies has made them valuable tools from the laboratory to the clinic. Since the description of the murine hybridoma technology by Koehler and Milstein in 1975, a phenomenal number of mo- clonal antibodies have been g. N° de réf. du vendeur 458521231
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The exquisite binding specificity of antibodies has made them valuable tools from the laboratory to the clinic. Since the description of the murine hybridoma technology by Köhler and Milstein in 1975, a phenomenal number of mo- clonal antibodies have been generated against a diverse array of targets. Some of these have become indispensable reagents in biomedical research, while others were developed for novel therapeutic applications. The attractiveness of an- bodies in this regard is obvious-high target specificity, adaptability to a wide range of disease states, and the potential ability to direct the host's immune s- tem for a therapeutic response. The initial excitement in finding Paul Ehrlich's 'magic bullet,' however, was met with widespread disappointment when it was demonstrated that murine antibodies frequently elicit the human anti-murine an- body (HAMA) response, thus rendering them ineffective and potentially unsafe in humans. Despite this setback, advances in recombinant DNA techniques over the last 15-20 years have empowered the engineering of recombinant antibodies with desired characteristics, including properties to avoid HAMA. The ability to p- duce bulk quantities of recombinant proteins from bacterial fermentation also fueled the design of numerous creative antibody constructs. To date, the United States Food and Drug Administration has approved more than 10 recombinant antibodies for human use, and hundreds more are in the development pipeline. The recent explosion in genomic and proteomic information appears ready to deliver many more disease targets amenable to antibody-based therapy. 562 pp. Englisch. N° de réf. du vendeur 9781617373527
Quantité disponible : 2 disponible(s)
Vendeur : Best Price, Torrance, CA, Etats-Unis
Etat : New. SUPER FAST SHIPPING. N° de réf. du vendeur 9781617373527
Quantité disponible : 2 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9781617373527_new
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The exquisite binding specificity of antibodies has made them valuable tools from the laboratory to the clinic. Since the description of the murine hybridoma technology by Köhler and Milstein in 1975, a phenomenal number of mo- clonal antibodies have been generated against a diverse array of targets. Some of these have become indispensable reagents in biomedical research, while others were developed for novel therapeutic applications. The attractiveness of an- bodies in this regard is obvious-high target specificity, adaptability to a wide range of disease states, and the potential ability to direct the host's immune s- tem for a therapeutic response. The initial excitement in finding Paul Ehrlich's 'magic bullet,' however, was met with widespread disappointment when it was demonstrated that murine antibodies frequently elicit the human anti-murine an- body (HAMA) response, thus rendering them ineffective and potentially unsafe in humans. Despite this setback, advances in recombinant DNA techniques over the last 15-20 years have empowered the engineering of recombinant antibodies with desired characteristics, including properties to avoid HAMA. The ability to p- duce bulk quantities of recombinant proteins from bacterial fermentation also fueled the design of numerous creative antibody constructs. To date, the United States Food and Drug Administration has approved more than 10 recombinant antibodies for human use, and hundreds more are in the development pipeline. The recent explosion in genomic and proteomic information appears ready to deliver many more disease targets amenable to antibody-based therapy. N° de réf. du vendeur 9781617373527
Quantité disponible : 2 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 576. N° de réf. du vendeur 263090871
Quantité disponible : 4 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand pp. 576 108 Illus. N° de réf. du vendeur 5805672
Quantité disponible : 4 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND pp. 576. N° de réf. du vendeur 183090877
Quantité disponible : 4 disponible(s)
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Mar2811580148269
Quantité disponible : Plus de 20 disponibles