Articles liés à Sequential Monte Carlo Methods for Nonlinear Discrete-Time...

Sequential Monte Carlo Methods for Nonlinear Discrete-Time Filtering - Couverture souple

 
9781627051194: Sequential Monte Carlo Methods for Nonlinear Discrete-Time Filtering

Synopsis

In these notes, we introduce particle filtering as a recursive importance sampling method that approximates the minimum-mean-square-error (MMSE) estimate of a sequence of hidden state vectors in scenarios where the joint probability distribution of the states and the observations is non-Gaussian and, therefore, closed-form analytical expressions for the MMSE estimate are generally unavailable. We begin the notes with a review of Bayesian approaches to static (i.e., time-invariant) parameter estimation. In the sequel, we describe the solution to the problem of sequential state estimation in linear, Gaussian dynamic models, which corresponds to the well-known Kalman (or Kalman-Bucy) filter. Finally, we move to the general nonlinear, non-Gaussian stochastic filtering problem and present particle filtering as a sequential Monte Carlo approach to solve that problem in a statistically optimal way. We review several techniques to improve the performance of particle filters, including importance function optimization, particle resampling, Markov Chain Monte Carlo move steps, auxiliary particle filtering, and regularized particle filtering. We also discuss Rao-Blackwellized particle filtering as a technique that is particularly well-suited for many relevant applications such as fault detection and inertial navigation. Finally, we conclude the notes with a discussion on the emerging topic of distributed particle filtering using multiple processors located at remote nodes in a sensor network. Throughout the notes, we often assume a more general framework than in most introductory textbooks by allowing either the observation model or the hidden state dynamic model to include unknown parameters. In a fully Bayesian fashion, we treat those unknown parameters also as random variables. Using suitable dynamic conjugate priors, that approach can be applied then to perform joint state and parameter estimation. Table of Contents: Introduction / Bayesian Estimation of Static Vectors / The Stochastic Filtering Problem / Sequential Monte Carlo Methods / Sampling/Importance Resampling (SIR) Filter / Importance Function Selection / Markov Chain Monte Carlo Move Step / Rao-Blackwellized Particle Filters / Auxiliary Particle Filter / Regularized Particle Filters / Cooperative Filtering with Multiple Observers / Application Examples / Summary

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

Présentation de l'éditeur

In these notes, we introduce particle filtering as a recursive importance sampling method that approximates the minimum-mean-square-error (MMSE) estimate of a sequence of hidden state vectors in scenarios where the joint probability distribution of the states and the observations is non-Gaussian and, therefore, closed-form analytical expressions for the MMSE estimate are generally unavailable. We begin the notes with a review of Bayesian approaches to static (i.e., time-invariant) parameter estimation. In the sequel, we describe the solution to the problem of sequential state estimation in linear, Gaussian dynamic models, which corresponds to the well-known Kalman (or Kalman-Bucy) filter. Finally, we move to the general nonlinear, non-Gaussian stochastic filtering problem and present particle filtering as a sequential Monte Carlo approach to solve that problem in a statistically optimal way. We review several techniques to improve the performance of particle filters, including importance function optimization, particle resampling, Markov Chain Monte Carlo move steps, auxiliary particle filtering, and regularized particle filtering. We also discuss Rao-Blackwellized particle filtering as a technique that is particularly well-suited for many relevant applications such as fault detection and inertial navigation. Finally, we conclude the notes with a discussion on the emerging topic of distributed particle filtering using multiple processors located at remote nodes in a sensor network. Throughout the notes, we often assume a more general framework than in most introductory textbooks by allowing either the observation model or the hidden state dynamic model to include unknown parameters. In a fully Bayesian fashion, we treat those unknown parameters also as random variables. Using suitable dynamic conjugate priors, that approach can be applied then to perform joint state and parameter estimation. Table of Contents: Introduction / Bayesian Estimation of Static Vectors / The Stochastic Filtering Problem / Sequential Monte Carlo Methods / Sampling/Importance Resampling (SIR) Filter / Importance Function Selection / Markov Chain Monte Carlo Move Step / Rao-Blackwellized Particle Filters / Auxiliary Particle Filter / Regularized Particle Filters / Cooperative Filtering with Multiple Observers / Application Examples / Summary

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

  • ÉditeurMorgan & Claypool Publishers
  • Date d'édition2013
  • ISBN 10 1627051198
  • ISBN 13 9781627051194
  • ReliureBroché
  • Langueanglais
  • Nombre de pages100
  • Coordonnées du fabricantnon disponible

Acheter D'occasion

état :  Assez bon
Fast Shipping - Safe and Secure...
Afficher cet article
EUR 15,27

Autre devise

EUR 66,16 expédition depuis Etats-Unis vers France

Destinations, frais et délais

Autres éditions populaires du même titre

9783031014079: Sequential Monte Carlo Methods for Nonlinear Discrete-Time Filtering

Edition présentée

ISBN 10 :  3031014073 ISBN 13 :  9783031014079
Editeur : Springer, 2013
Couverture souple

Résultats de recherche pour Sequential Monte Carlo Methods for Nonlinear Discrete-Time...

Image d'archives

Bruno, Marcelo G.S.
Edité par Morgan & Claypool Publishers, 2013
ISBN 10 : 1627051198 ISBN 13 : 9781627051194
Ancien ou d'occasion paperback

Vendeur : suffolkbooks, Center moriches, NY, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

paperback. Etat : Very Good. Fast Shipping - Safe and Secure 7 days a week! N° de réf. du vendeur 3TWOWA001N6T

Contacter le vendeur

Acheter D'occasion

EUR 15,27
Autre devise
Frais de port : EUR 66,16
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 8 disponible(s)

Ajouter au panier