Articles liés à Mining Human Mobile in Location-Based Social Networks

Mining Human Mobile in Location-Based Social Networks - Couverture souple

 
9781627054126: Mining Human Mobile in Location-Based Social Networks

Synopsis

In recent years, there has been a rapid growth of location-based social networking services, such as Foursquare and Facebook Places, which have attracted an increasing number of users and greatly enriched their urban experience. Typical location-based social networking sites allow a user to ""check in"" at a real-world POI (point of interest, e.g., a hotel, restaurant, theater, etc.), leave tips toward the POI, and share the check-in with their online friends. The check-in action bridges the gap between real world and online social networks, resulting in a new type of social networks, namely location-based social networks (LBSNs). Compared to traditional GPS data, location-based social networks data contains unique properties with abundant heterogeneous information to reveal human mobility, i.e., ""when and where a user (who) has been to for what,"" corresponding to an unprecedented opportunity to better understand human mobility from spatial, temporal, social, and content aspects. The mining and understanding of human mobility can further lead to effective approaches to improve current location-based services from mobile marketing to recommender systems, providing users more convenient life experience than before. This book takes a data mining perspective to offer an overview of studying human mobility in location-based social networks and illuminate a wide range of related computational tasks. It introduces basic concepts, elaborates associated challenges, reviews state-of-the-art algorithms with illustrative examples and real-world LBSN datasets, and discusses effective evaluation methods in mining human mobility. In particular, we illustrate unique characteristics and research opportunities of LBSN data, present representative tasks of mining human mobility on location-based social networks, including capturing user mobility patterns to understand when and where a user commonly goes (location prediction), and exploiting user preferences and location profiles to investigate where and when a user wants to explore (location recommendation), along with studying a user's check-in activity in terms of why a user goes to a certain location.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

Acheter D'occasion

état :  Assez bon
Fast Shipping - Safe and Secure...
Afficher cet article
EUR 30,09

Autre devise

EUR 3,41 expédition vers Etats-Unis

Destinations, frais et délais

Autres éditions populaires du même titre

9783031007804: Mining Human Mobility in Location-Based Social Networks

Edition présentée

ISBN 10 :  3031007808 ISBN 13 :  9783031007804
Editeur : Springer, 2015
Couverture souple

Résultats de recherche pour Mining Human Mobile in Location-Based Social Networks

Image d'archives

Gao, Huiji,Liu, Huan
Edité par Morgan & Claypool, 2015
ISBN 10 : 162705412X ISBN 13 : 9781627054126
Ancien ou d'occasion paperback

Vendeur : suffolkbooks, Center moriches, NY, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

paperback. Etat : Very Good. Fast Shipping - Safe and Secure 7 days a week! N° de réf. du vendeur 3TWOWA001VS9

Contacter le vendeur

Acheter D'occasion

EUR 30,09
Autre devise
Frais de port : EUR 3,41
Vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier