Learn how large language models like GPT and Gemini work under the hood in plain English.
How Large Language Models Work translates years of expert research on Large Language Models into a readable, focused introduction to working with these amazing systems. It explains clearly how LLMs function, introduces the optimization techniques to fine-tune them, and shows how to create pipelines and processes to ensure your AI applications are efficient and error-free.
In How Large Language Models Work you will learn how to:
How Large Language Models Work is written by some of the best machine learning researchers at Booz Allen Hamilton, including researcher Stella Biderman, Director of AI/ML Research Drew Farris, and Director of Emerging AI Edward Raff. In clear and simple terms, these experts lay out the foundational concepts of LLMs, the technology’s opportunities and limitations, and best practices for incorporating AI into your organization.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Edward Raff is a Director of Emerging AI at Booz Allen Hamilton, where he leads the machine learning research team. He has worked in healthcare, natural language processing, computer vision, and cyber security, among fundamental AI/ML research. The author of Inside Deep Learning, Dr. Raff has over 100 published research articles at the top artificial intelligence conferences. He is the author of the Java Statistical Analysis Tool library, a Senior Member of the Association for the Advancement of Artificial Intelligence, and twice chaired the Conference on Applied Machine Learning and Information Technology and the AI for Cyber Security workshop. Dr. Raff's work has been deployed and used by anti-virus companies all over the world.
Drew Farris is a Director of AI/ML Research at Booz Allen Hamilton. He works with clients to build information retrieval, as well as machine learning and large scale data management systems, and has co-authored Booz Allen's Field Guide to Data Science, Machine Intelligence Primer and Manning Publications' Taming Text, the 2013 Jolt Award-winning book on computational text processing. He is a member of the Apache Software Foundation and has contributed to a number of open source projects including Apache Accumulo, Lucene, Mahout and Solr.
Stella Biderman is a machine learning researcher at Booz Allen Hamilton and the executive director of the non-profit research center EleutherAI. She is a leading advocate for open source artificial intelligence and has trained many of the world's most powerful open source artificial intelligence algorithms. She has a master's degree in computer science from the Georgia Institute of Technology and degrees in Mathematics and Philosophy from the University of Chicago.
From the back cover:
About the reader:
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 50104918
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 50104918-n
Quantité disponible : Plus de 20 disponibles
Vendeur : INDOO, Avenel, NJ, Etats-Unis
Etat : As New. Unread copy in mint condition. N° de réf. du vendeur SS9781633437081
Quantité disponible : Plus de 20 disponibles
Vendeur : INDOO, Avenel, NJ, Etats-Unis
Etat : New. N° de réf. du vendeur 9781633437081
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
PAP. Etat : New. New Book. Shipped from UK. Established seller since 2000. N° de réf. du vendeur GB-9781633437081
Quantité disponible : 1 disponible(s)
Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis
Paperback. Etat : new. Paperback. Learn how large language models like GPT and Gemini work under the hood in plain English.How Large Language Models Work translates years of expert research on Large Language Models into a readable, focused introduction to working with these amazing systems. It explains clearly how LLMs function, introduces the optimization techniques to fine-tune them, and shows how to create pipelines and processes to ensure your AI applications are efficient and error-free.In How Large Language Models Work you will learn how to: Test and evaluate LLMsUse human feedback, supervised fine-tuning, and Retrieval augmented generation (RAG)Reducing the risk of bad outputs, high-stakes errors, and automation biasHuman-computer interaction systemsCombine LLMs with traditional ML How Large Language Models Work is written by some of the best machine learning researchers at Booz Allen Hamilton, including researcher Stella Biderman, Director of AI/ML Research Drew Farris, and Director of Emerging AI Edward Raff. In clear and simple terms, these experts lay out the foundational concepts of LLMs, the technologys opportunities and limitations, and best practices for incorporating AI into your organization. Learn how large language models like GPT and Gemini work under the hood in plain English. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9781633437081
Quantité disponible : 1 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. N° de réf. du vendeur 26403930993
Quantité disponible : 2 disponible(s)
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 50104918-n
Quantité disponible : Plus de 20 disponibles
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 176 pages. 9.00x7.25x0.50 inches. In Stock. N° de réf. du vendeur __1633437086
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 50104918
Quantité disponible : Plus de 20 disponibles