Multi-hop Question Answering (MHQA) is the task of answering natural language questions that involve extracting and combining multiple pieces of information and doing multiple steps of reasoning. The ability to answer multi-hop questions and perform multi-step reasoning can significantly improve the utility of NLP systems. But the notion of ‘multiple hops’ is somewhat abstract which results in a large variety of tasks that require multi-hop reasoning. This leads to different datasets and models that differ significantly from each other and makes the field challenging to generalize and survey. In this monograph, the authors provide a general and formal definition of the MHQA task, and organize and summarize existing MHQA frameworks. They also outline some best practices for building MHQA datasets. This monograph provides a systematic and thorough introduction to Multi-Hop Question Answering that is becoming increasingly important in practical AI systems.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 3,42 expédition vers Etats-Unis
Destinations, frais et délaisVendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. N° de réf. du vendeur 26401343790
Quantité disponible : 4 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand. N° de réf. du vendeur 396081905
Quantité disponible : 4 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND. N° de réf. du vendeur 18401343780
Quantité disponible : 4 disponible(s)