Articles liés à Recommender Systems Meet Large Language Model Agents:...

Recommender Systems Meet Large Language Model Agents: A Survey - Couverture souple

 
9781638285649: Recommender Systems Meet Large Language Model Agents: A Survey

Synopsis

The integration of Large Language Models (LLM) and Recommender Systems (RS) has marked a transformative shift in how personalized recommendations are generated and delivered. Recommender systems, designed to predict user preferences and suggest relevant items, are ubiquitous in applications ranging from e-commerce to entertainment and social media. Historically, these systems have relied on techniques such as collaborative filtering, content-based filtering, and hybrid approaches. However, the advent of LLMs and AI agents has introduced new paradigms, significantly enhancing the capabilities and performance of recommender systems.

This monograph provides an extensive review of critical challenges, the current landscape, and future directions in the collaboration between LLM-based AI agents (LLM Agent) and recommender systems. The monograph begins with an introduction to the foundational knowledge, exploring the components of LLM agents and the applications of LLMs in recommender systems. It then delves into the symbiotic relationship between LLM agents and recommender systems, illustrating how LLM agents enhance recommender systems and how recommender systems support better LLM agents. Specifically, the overall architectures for designing LLM agents for recommendation are discussed, encompassing profile, memory, planning, and action components, along with multi-agent collaboration. Conversely, it investigates how recommender systems contribute to LLM agents, focusing on areas such as memory recommendation, plan recommendation, tool recommendation, agent recommendation, and personalized LLMs and LLM agents.

Furthermore, a critical evaluation is made of trustworthy AI agents and recommender systems, addressing key issues of safety, explainability, fairness, and privacy. Finally, potential future research directions are proposed, highlighting emerging trends and opportunities in the intersection of AI agents and recommender systems. This monograph concludes by summarizing the key insights of current research and outlining promising avenues for future exploration in this rapidly evolving field.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

Acheter neuf

Afficher cet article
EUR 94,15

Autre devise

EUR 6,90 expédition depuis Etats-Unis vers France

Destinations, frais et délais

Résultats de recherche pour Recommender Systems Meet Large Language Model Agents:...

Image d'archives

Zhu, XI; Wang, Yu; Gao, Hang
Edité par Now Publishers, 2025
ISBN 10 : 1638285640 ISBN 13 : 9781638285649
Neuf Couverture souple

Vendeur : California Books, Miami, FL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur I-9781638285649

Contacter le vendeur

Acheter neuf

EUR 94,15
Autre devise
Frais de port : EUR 6,90
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Zhu, XI; Wang, Yu; Gao, Hang
Edité par Now Publishers, 2025
ISBN 10 : 1638285640 ISBN 13 : 9781638285649
Neuf Couverture souple
impression à la demande

Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 238. N° de réf. du vendeur C9781638285649

Contacter le vendeur

Acheter neuf

EUR 109,32
Autre devise
Frais de port : EUR 5,10
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Xi Zhu
Edité par now publishers Inc, Hanover, 2025
ISBN 10 : 1638285640 ISBN 13 : 9781638285649
Neuf Paperback

Vendeur : CitiRetail, Stevenage, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : new. Paperback. The integration of Large Language Models (LLM) and Recommender Systems (RS) has marked a transformative shift in how personalized recommendations are generated and delivered. Recommender systems, designed to predict user preferences and suggest relevant items, are ubiquitous in applications ranging from e-commerce to entertainment and social media. Historically, these systems have relied on techniques such as collaborative filtering, content-based filtering, and hybrid approaches. However, the advent of LLMs and AI agents has introduced new paradigms, significantly enhancing the capabilities and performance of recommender systems.This monograph provides an extensive review of critical challenges, the current landscape, and future directions in the collaboration between LLM-based AI agents (LLM Agent) and recommender systems. The monograph begins with an introduction to the foundational knowledge, exploring the components of LLM agents and the applications of LLMs in recommender systems. It then delves into the symbiotic relationship between LLM agents and recommender systems, illustrating how LLM agents enhance recommender systems and how recommender systems support better LLM agents. Specifically, the overall architectures for designing LLM agents for recommendation are discussed, encompassing profile, memory, planning, and action components, along with multi-agent collaboration. Conversely, it investigates how recommender systems contribute to LLM agents, focusing on areas such as memory recommendation, plan recommendation, tool recommendation, agent recommendation, and personalized LLMs and LLM agents.Furthermore, a critical evaluation is made of trustworthy AI agents and recommender systems, addressing key issues of safety, explainability, fairness, and privacy. Finally, potential future research directions are proposed, highlighting emerging trends and opportunities in the intersection of AI agents and recommender systems. This monograph concludes by summarizing the key insights of current research and outlining promising avenues for future exploration in this rapidly evolving field. This monograph provides an extensive review of critical challenges, current landscape, and future directions in the collaboration between LLM-based AI agents and recommender systems, as well as an evaluation of trustworthy AI agents and recommender systems. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. N° de réf. du vendeur 9781638285649

Contacter le vendeur

Acheter neuf

EUR 102,04
Autre devise
Frais de port : EUR 28,80
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Zhu, Xi (Author)/ Wang, Yu (Author)/ Gao, Hang (Author)/ Xu, Wujiang (Author)/ Wang, Chen (Author)/ Liu, Zhiwei (Author)/ Wang, Kun (Author)/ Jin, Mingyu (Author)/ Pang, Linsey (Author)/ Weng, Qingsong (Author)/ Yu, Philip S. (Author)/ Zhang, Yongfeng (Au
Edité par now publishers Inc, 2025
ISBN 10 : 1638285640 ISBN 13 : 9781638285649
Neuf Paperback

Vendeur : Revaluation Books, Exeter, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : Brand New. 162 pages. 6.14x0.35x9.21 inches. In Stock. N° de réf. du vendeur x-1638285640

Contacter le vendeur

Acheter neuf

EUR 120,31
Autre devise
Frais de port : EUR 11,52
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Xi Zhu
Edité par now publishers Inc, Hanover, 2025
ISBN 10 : 1638285640 ISBN 13 : 9781638285649
Neuf Paperback

Vendeur : AussieBookSeller, Truganina, VIC, Australie

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : new. Paperback. The integration of Large Language Models (LLM) and Recommender Systems (RS) has marked a transformative shift in how personalized recommendations are generated and delivered. Recommender systems, designed to predict user preferences and suggest relevant items, are ubiquitous in applications ranging from e-commerce to entertainment and social media. Historically, these systems have relied on techniques such as collaborative filtering, content-based filtering, and hybrid approaches. However, the advent of LLMs and AI agents has introduced new paradigms, significantly enhancing the capabilities and performance of recommender systems.This monograph provides an extensive review of critical challenges, the current landscape, and future directions in the collaboration between LLM-based AI agents (LLM Agent) and recommender systems. The monograph begins with an introduction to the foundational knowledge, exploring the components of LLM agents and the applications of LLMs in recommender systems. It then delves into the symbiotic relationship between LLM agents and recommender systems, illustrating how LLM agents enhance recommender systems and how recommender systems support better LLM agents. Specifically, the overall architectures for designing LLM agents for recommendation are discussed, encompassing profile, memory, planning, and action components, along with multi-agent collaboration. Conversely, it investigates how recommender systems contribute to LLM agents, focusing on areas such as memory recommendation, plan recommendation, tool recommendation, agent recommendation, and personalized LLMs and LLM agents.Furthermore, a critical evaluation is made of trustworthy AI agents and recommender systems, addressing key issues of safety, explainability, fairness, and privacy. Finally, potential future research directions are proposed, highlighting emerging trends and opportunities in the intersection of AI agents and recommender systems. This monograph concludes by summarizing the key insights of current research and outlining promising avenues for future exploration in this rapidly evolving field. This monograph provides an extensive review of critical challenges, current landscape, and future directions in the collaboration between LLM-based AI agents and recommender systems, as well as an evaluation of trustworthy AI agents and recommender systems. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. N° de réf. du vendeur 9781638285649

Contacter le vendeur

Acheter neuf

EUR 100,82
Autre devise
Frais de port : EUR 31,91
De Australie vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Xi Zhu
Edité par Now Publishers Inc, 2025
ISBN 10 : 1638285640 ISBN 13 : 9781638285649
Neuf Taschenbuch
impression à la demande

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This monograph provides an extensive review of critical challenges, current landscape, and future directions in the collaboration between LLM-based AI agents and recommender systems, as well as an evaluation of trustworthy AI agents and recommender systems. N° de réf. du vendeur 9781638285649

Contacter le vendeur

Acheter neuf

EUR 130,55
Autre devise
Frais de port : EUR 10,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Xi Zhu
Edité par now publishers Inc, Hanover, 2025
ISBN 10 : 1638285640 ISBN 13 : 9781638285649
Neuf Paperback

Vendeur : Grand Eagle Retail, Mason, OH, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : new. Paperback. The integration of Large Language Models (LLM) and Recommender Systems (RS) has marked a transformative shift in how personalized recommendations are generated and delivered. Recommender systems, designed to predict user preferences and suggest relevant items, are ubiquitous in applications ranging from e-commerce to entertainment and social media. Historically, these systems have relied on techniques such as collaborative filtering, content-based filtering, and hybrid approaches. However, the advent of LLMs and AI agents has introduced new paradigms, significantly enhancing the capabilities and performance of recommender systems.This monograph provides an extensive review of critical challenges, the current landscape, and future directions in the collaboration between LLM-based AI agents (LLM Agent) and recommender systems. The monograph begins with an introduction to the foundational knowledge, exploring the components of LLM agents and the applications of LLMs in recommender systems. It then delves into the symbiotic relationship between LLM agents and recommender systems, illustrating how LLM agents enhance recommender systems and how recommender systems support better LLM agents. Specifically, the overall architectures for designing LLM agents for recommendation are discussed, encompassing profile, memory, planning, and action components, along with multi-agent collaboration. Conversely, it investigates how recommender systems contribute to LLM agents, focusing on areas such as memory recommendation, plan recommendation, tool recommendation, agent recommendation, and personalized LLMs and LLM agents.Furthermore, a critical evaluation is made of trustworthy AI agents and recommender systems, addressing key issues of safety, explainability, fairness, and privacy. Finally, potential future research directions are proposed, highlighting emerging trends and opportunities in the intersection of AI agents and recommender systems. This monograph concludes by summarizing the key insights of current research and outlining promising avenues for future exploration in this rapidly evolving field. This monograph provides an extensive review of critical challenges, current landscape, and future directions in the collaboration between LLM-based AI agents and recommender systems, as well as an evaluation of trustworthy AI agents and recommender systems. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9781638285649

Contacter le vendeur

Acheter neuf

EUR 94,14
Autre devise
Frais de port : EUR 64,68
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image d'archives

Zhu, XI; Wang, Yu; Gao, Hang
Edité par Now Publishers, 2025
ISBN 10 : 1638285640 ISBN 13 : 9781638285649
Neuf Couverture souple

Vendeur : Books Puddle, New York, NY, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 26404367215

Contacter le vendeur

Acheter neuf

EUR 151,48
Autre devise
Frais de port : EUR 7,76
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Zhu, XI; Wang, Yu; Gao, Hang
Edité par Now Publishers, 2025
ISBN 10 : 1638285640 ISBN 13 : 9781638285649
Neuf Couverture souple
impression à la demande

Vendeur : Majestic Books, Hounslow, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. Print on Demand. N° de réf. du vendeur 409835696

Contacter le vendeur

Acheter neuf

EUR 159,67
Autre devise
Frais de port : EUR 10,20
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier

Image d'archives

Zhu, XI; Wang, Yu; Gao, Hang
Edité par Now Publishers, 2025
ISBN 10 : 1638285640 ISBN 13 : 9781638285649
Neuf Couverture souple
impression à la demande

Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. PRINT ON DEMAND. N° de réf. du vendeur 18404367205

Contacter le vendeur

Acheter neuf

EUR 164,48
Autre devise
Frais de port : EUR 7,95
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 4 disponible(s)

Ajouter au panier