Neural networks have been widely used in many applications, such as image classification and understanding, language processing, and control of autonomous systems. These networks work by mapping inputs to outputs through a sequence of layers. At each layer, the input to that layer undergoes an affine transformation followed by a simple nonlinear transformation before being passed to the next layer. Neural networks are being used for increasingly important tasks, and in some cases, incorrect outputs can lead to costly consequences, hence validation of correctness at each layer is vital. The sheer size of the networks makes this not feasible using traditional methods. In this monograph, the authors survey a class of methods that are capable of formally verifying properties of deep neural networks. In doing so, they introduce a unified mathematical framework for verifying neural networks, classify existing methods under this framework, provide pedagogical implementations of existing methods, and compare those methods on a set of benchmark problems. Algorithms for Verifying Deep Neural Networks serves as a tutorial for students and professionals interested in this emerging field as well as a benchmark to facilitate the design of new verification algorithms.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. N° de réf. du vendeur 26384628501
Quantité disponible : 4 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand. N° de réf. du vendeur 379275466
Quantité disponible : 4 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND. N° de réf. du vendeur 18384628511
Quantité disponible : 4 disponible(s)
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
paperback. Etat : New. New. Ships from Multiple Locations. book. N° de réf. du vendeur ERICA82316808378696
Quantité disponible : 1 disponible(s)