Articles liés à Quality Estimation for Machine Translation

Quality Estimation for Machine Translation - Couverture souple

 
9781681733739: Quality Estimation for Machine Translation

Synopsis

Many applications within natural language processing involve performing text-to-text transformations, i.e., given a text in natural language as input, systems are required to produce a version of this text (e.g., a translation), also in natural language, as output. Automatically evaluating the output of such systems is an important component in developing text-to-text applications. Two approaches have been proposed for this problem: (i) to compare the system outputs against one or more reference outputs using string matching-based evaluation metrics and (ii) to build models based on human feedback to predict the quality of system outputs without reference texts. Despite their popularity, reference-based evaluation metrics are faced with the challenge that multiple good (and bad) quality outputs can be produced by text-to-text approaches for the same input. This variation is very hard to capture, even with multiple reference texts. In addition, reference-based metrics cannot be used in production (e.g., online machine translation systems), when systems are expected to produce outputs for any unseen input. In this book, we focus on the second set of metrics, so-called Quality Estimation (QE) metrics, where the goal is to provide an estimate on how good or reliable the texts produced by an application are without access to gold-standard outputs. QE enables different types of evaluation that can target different types of users and applications. Machine learning techniques are used to build QE models with various types of quality labels and explicit features or learnt representations, which can then predict the quality of unseen system outputs. This book describes the topic of QE for text-to-text applications, covering quality labels, features, algorithms, evaluation, uses, and state-of-the-art approaches. It focuses on machine translation as application, since this represents most of the QE work done to date. It also briefly describes QE for several other applications, including text simplification, text summarization, grammatical error correction, and natural language generation.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Lucia Specia is a Professor of Language Engineering in the Department of Computer Science at the University of Sheffield. Her research focuses on various aspects of datadriven approaches to multilingual language processing with a particular interest in multimodal context models for language grounding that has applications in machine translation, quality estimation, and text adaptation. She is the recipient of an ERC Starting Grant on multimodal machine translation (2016–2021) and has been involved in a number of other research projects on machine translation (EC FP7 QTLaunchPad and EXPERT, EC H2020 QT21 21, CRACKER) and EC H2020 text adaptation (SIMPATICO). Before joining the University of Sheffield in 2012, she was Senior Lecturer at the University of Wolverhampton (2010–2011) and research engineer at the Xerox Research Centre, France (2008–2009). She received a Ph.D. in Computer Science from the University of São Paulo, Brazil, in 2008.

Carolina Scarton is a Research Associate at the University of Sheffield and a member of the Natural Language Processing Group. She holds a Ph.D. on Quality Estimation of Machine Translation from the University of Sheffield (2017) and her research interests are quality estimation, text simplification, evaluation of NLP task outputs at the document level, and readability assessment. Currently, Dr. Scarton works for the EC H2020 SIMPATICO project, where she develops approaches for sentence simplification. Previously, she was a Marie Skłodowska-Curie Early Stage Researcher working for the EXPERT project on the topic of machine translation at the University of Sheffield (2013–2016).

Gustavo Henrique Paetzold is an Adjunct Professor at the Federal University of Technology – Paraná. He holds a Ph.D. from the University of Sheffield (2016). His main research interests are text simplification, psycholinguistics, quality estimation, and machine learning applied to natural language processing. Prior to joining the Federal University of Technology, Dr. Paetzold worked as a Research Associate at the University of Sheffield on the EC H2020 SIMPATICO project, where he developed approaches for lexical simplification (2016–2018).

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Acheter D'occasion

état :  Assez bon
Fast Shipping - Safe and Secure...
Afficher cet article
EUR 14,88

Autre devise

EUR 64,56 expédition depuis Etats-Unis vers France

Destinations, frais et délais

Acheter neuf

Afficher cet article
EUR 44,29

Autre devise

EUR 43 expédition depuis Etats-Unis vers France

Destinations, frais et délais

Autres éditions populaires du même titre

9781681733753: Quality Estimation for Machine Translation

Edition présentée

ISBN 10 :  1681733757 ISBN 13 :  9781681733753
Editeur : Morgan & Claypool Publishers, 2018
Couverture rigide

Résultats de recherche pour Quality Estimation for Machine Translation

Image d'archives

Specia, Lucia,Scarton, Carolina,Paetzold, Gustavo Henrique
Edité par Morgan & Claypool Publishers, 2018
ISBN 10 : 1681733730 ISBN 13 : 9781681733739
Ancien ou d'occasion paperback

Vendeur : suffolkbooks, Center moriches, NY, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

paperback. Etat : Very Good. Fast Shipping - Safe and Secure 7 days a week! N° de réf. du vendeur 3TWOWA001MA3

Contacter le vendeur

Acheter D'occasion

EUR 14,88
Autre devise
Frais de port : EUR 64,56
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 5 disponible(s)

Ajouter au panier

Image d'archives

Specia, Lucia; Scarton, Carolina; Paetzold, Gustavo Henrique
Edité par Morgan & Claypool Publishers, 2018
ISBN 10 : 1681733730 ISBN 13 : 9781681733739
Neuf paperback

Vendeur : Broad Street Books, Branchville, NJ, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

paperback. Etat : New. Brand New Book. N° de réf. du vendeur f13572

Contacter le vendeur

Acheter neuf

EUR 44,29
Autre devise
Frais de port : EUR 43
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier