Articles liés à Education 4.0 Knowledge. Peter Chew Method For Quadratic...

Education 4.0 Knowledge. Peter Chew Method For Quadratic Equation - Couverture souple

 
9781716374302: Education 4.0 Knowledge. Peter Chew Method For Quadratic Equation

Synopsis

Covid19 has spread globally. When the Covid-19 pandemic occurs, schools must be closed or partially opened, which affects teaching and learning. Educational innovations to deal with epidemics such as Covid-19 and other urgent epidemics are very important. Therefore, the three cores of Education 4.0 knowledge applicable to pandemics such as COVID-19 are simple, self-learning and technology-integrated knowledge (SST knowledge). Simple knowledge is the most important core of Education 4.0, it same as Albert Einstein quotes: everything should be made as simple as possible, but not simpler, If you can't explain it simply you don't understand it well enough, We cannot solve our problems with the same thinking we used when we created them. Peter Chew Method for Quadratic Equation is a simple method to solve the same problem, compare current methods. The Objective of Peter Chew Method is to make it easier for upcoming generation to solve the quadratic equation problem and solve the higher order function problem of the quadratic equation that cannot be solved by the current method. The French mathematician Veda established the relationship between the equation root and the coefficient in 1615. Veda's theorem states that if α and β are two roots of the quadratic equation ax^2+bx+c=0 and a 0. Then the sum of the two roots, α+β = - b/a, the product of the two roots, αβ = c/a . The current method for solving the problem of the quadratic equation is to first find the values of α+β and αβ using the Veda's theorem, then convert it into the α+β and αβ forms, and then substitute the values of α+β and αβ to find the answer. The current method is not suitable for solving the problem of higher order functions, because it is difficult to convert into α+β and αβ forms. By using Peter Chew Method, The problem of the quadratic equation does not need to be converted to α+β and αβ, so the problem of higher order functions can also be solved. Peter Chew method is to first find the roots of the quadratic equation, then let it as α and β, and then substitute the values of α and β to the problem to find the answer. Peter Chew method is also applicable to a quadratic equation with complex roots and a quadratic equation with complex coefficients.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

  • ÉditeurLulu.com
  • Date d'édition2022
  • ISBN 10 1716374308
  • ISBN 13 9781716374302
  • ReliureBroché
  • Langueanglais
  • Nombre de pages74
  • Coordonnées du fabricantnon disponible

Acheter neuf

Afficher cet article
EUR 22,50

Autre devise

EUR 4,33 expédition depuis Royaume-Uni vers France

Destinations, frais et délais

Résultats de recherche pour Education 4.0 Knowledge. Peter Chew Method For Quadratic...

Image d'archives

Peter Chew
Edité par Lulu.com, 2022
ISBN 10 : 1716374308 ISBN 13 : 9781716374302
Neuf Paperback / softback
impression à la demande

Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback / softback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 109. N° de réf. du vendeur C9781716374302

Contacter le vendeur

Acheter neuf

EUR 22,50
Autre devise
Frais de port : EUR 4,33
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Chew, Peter
Edité par Lulu Press, 2022
ISBN 10 : 1716374308 ISBN 13 : 9781716374302
Neuf PAP
impression à la demande

Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

PAP. Etat : New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9781716374302

Contacter le vendeur

Acheter neuf

EUR 26,88
Autre devise
Frais de port : EUR 1,09
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Chew, Peter
Edité par Lulu.com, 2022
ISBN 10 : 1716374308 ISBN 13 : 9781716374302
Neuf Couverture souple

Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. In. N° de réf. du vendeur ria9781716374302_new

Contacter le vendeur

Acheter neuf

EUR 23,34
Autre devise
Frais de port : EUR 4,73
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Chew, Peter
Edité par Lulu.com, 2022
ISBN 10 : 1716374308 ISBN 13 : 9781716374302
Neuf Couverture souple

Vendeur : California Books, Miami, FL, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur I-9781716374302

Contacter le vendeur

Acheter neuf

EUR 21,78
Autre devise
Frais de port : EUR 7,05
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Chew, Peter
Edité par Lulu Press, 2022
ISBN 10 : 1716374308 ISBN 13 : 9781716374302
Neuf PAP
impression à la demande

Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

PAP. Etat : New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9781716374302

Contacter le vendeur

Acheter neuf

EUR 25,75
Autre devise
Frais de port : EUR 5,05
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Chew, Peter
Edité par Lulu.com, 2022
ISBN 10 : 1716374308 ISBN 13 : 9781716374302
Neuf Couverture souple

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 805351834

Contacter le vendeur

Acheter neuf

EUR 29,96
Autre devise
Frais de port : EUR 9,70
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

Peter Chew
Edité par Lulu.Com, 2022
ISBN 10 : 1716374308 ISBN 13 : 9781716374302
Neuf Taschenbuch
impression à la demande

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Covid19 has spread globally. When the Covid-19 pandemic occurs, schools must be closed or partially opened, which affects teaching and learning. Educational innovations to deal with epidemics such as Covid-19 and other urgent epidemics are very important. Therefore, the three cores of Education 4.0 knowledge applicable to pandemics such as COVID-19 are simple, self-learning and technology-integrated knowledge (SST knowledge). Simple knowledge is the most important core of Education 4.0 , it same as Albert Einstein quotes: everything should be made as simple as possible, but not simpler, If you can't explain it simply you don't understand it well enough, We cannot solve our problems with the same thinking we used when we created them. Peter Chew Method for Quadratic Equation is a simple method to solve the same problem, compare current methods. The Objective of Peter Chew Method is to make it easier for upcoming generation to solve the quadratic equation problem and solve the higher order function problem of the quadratic equation that cannot be solved by the current method. The French mathematician Veda established the relationship between the equation root and the coefficient in 1615. Veda's theorem states that if ¿ and ¿ are two roots of the quadratic equation ax^2+bx+c=0 and a ¿ 0. Then the sum of the two roots, ¿+¿ = - b/a, the product of the two roots, ¿¿ = c/a . The current method for solving the problem of the quadratic equation is to first find the values of ¿+¿ and ¿¿ using the Veda's theorem, then convert it into the ¿+¿ and ¿¿ forms, and then substitute the values of ¿+¿ and ¿¿ to find the answer. The current method is not suitable for solving the problem of higher order functions , because it is difficult to convert into ¿+¿ and ¿¿ forms. By using Peter Chew Method , The problem of the quadratic equation does not need to be converted to ¿+¿ and ¿¿, so the problem of higher order functions can also be solved. Peter Chew method is to first find the roots of the quadratic equation, then let it as ¿ and ¿, and then substitute the values of ¿ and ¿ to the problem to find the answer. Peter Chew method is also applicable to a quadratic equation with complex roots and a quadratic equation with complex coefficients. N° de réf. du vendeur 9781716374302

Contacter le vendeur

Acheter neuf

EUR 29,85
Autre devise
Frais de port : EUR 10,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier