Unleash the power of unsupervised machine learning in Hidden Markov Models using TensorFlow, pgmpy, and hmmlearn
Hidden Markov Model (HMM) is a statistical model based on the Markov chain concept. Hands-On Markov Models with Python helps you get to grips with HMMs and different inference algorithms by working on real-world problems. The hands-on examples explored in the book help you simplify the process flow in machine learning by using Markov model concepts, thereby making it accessible to everyone.
Once you've covered the basic concepts of Markov chains, you'll get insights into Markov processes, models, and types with the help of practical examples. After grasping these fundamentals, you'll move on to learning about the different algorithms used in inferences and applying them in state and parameter inference. In addition to this, you'll explore the Bayesian approach of inference and learn how to apply it in HMMs.
In further chapters, you'll discover how to use HMMs in time series analysis and natural language processing (NLP) using Python. You'll also learn to apply HMM to image processing using 2D-HMM to segment images. Finally, you'll understand how to apply HMM for reinforcement learning (RL) with the help of Q-Learning, and use this technique for single-stock and multi-stock algorithmic trading.
By the end of this book, you will have grasped how to build your own Markov and hidden Markov models on complex datasets in order to apply them to projects.
Hands-On Markov Models with Python is for you if you are a data analyst, data scientist, or machine learning developer and want to enhance your machine learning knowledge and skills. This book will also help you build your own hidden Markov models by applying them to any sequence of data.
Basic knowledge of machine learning and the Python programming language is expected to get the most out of the book
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Ankur Ankan is a BTech graduate from IIT (BHU), Varanasi. He is currently working in the field of data science. He is an open source enthusiast and his major work includes starting pgmpy with four other members. In his free time, he likes to participate in Kaggle competitions.
Abinash Panda has been a data scientist for more than 4 years. He has worked at multiple early-stage start-ups and helped them build their data analytics pipelines. He loves to munge, plot, and analyze data. He has been a speaker at Python conferences. These days, he is busy co-founding a start-up. He has contributed to books on probabilistic graphical models by Packt Publishing.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 7,20 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisEUR 4,62 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisVendeur : Anybook.com, Lincoln, Royaume-Uni
Etat : Good. This is an ex-library book and may have the usual library/used-book markings inside.This book has soft covers. In good all round condition. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,450grams, ISBN:9781788625449. N° de réf. du vendeur 9606164
Quantité disponible : 1 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9781788625449_new
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis
PAP. Etat : New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9781788625449
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
PAP. Etat : New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9781788625449
Quantité disponible : Plus de 20 disponibles
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9781788625449
Quantité disponible : Plus de 20 disponibles
Vendeur : Rarewaves.com UK, London, Royaume-Uni
Paperback. Etat : New. Unleash the power of unsupervised machine learning in Hidden Markov Models using TensorFlow, pgmpy, and hmmlearnKey FeaturesBuild a variety of Hidden Markov Models (HMM)Create and apply models to any sequence of data to analyze, predict, and extract valuable insightsUse natural language processing (NLP) techniques and 2D-HMM model for image segmentationBook DescriptionHidden Markov Model (HMM) is a statistical model based on the Markov chain concept. Hands-On Markov Models with Python helps you get to grips with HMMs and different inference algorithms by working on real-world problems. The hands-on examples explored in the book help you simplify the process flow in machine learning by using Markov model concepts, thereby making it accessible to everyone.Once you've covered the basic concepts of Markov chains, you'll get insights into Markov processes, models, and types with the help of practical examples. After grasping these fundamentals, you'll move on to learning about the different algorithms used in inferences and applying them in state and parameter inference. In addition to this, you'll explore the Bayesian approach of inference and learn how to apply it in HMMs.In further chapters, you'll discover how to use HMMs in time series analysis and natural language processing (NLP) using Python. You'll also learn to apply HMM to image processing using 2D-HMM to segment images. Finally, you'll understand how to apply HMM for reinforcement learning (RL) with the help of Q-Learning, and use this technique for single-stock and multi-stock algorithmic trading.By the end of this book, you will have grasped how to build your own Markov and hidden Markov models on complex datasets in order to apply them to projects.What you will learnExplore a balance of both theoretical and practical aspects of HMMImplement HMMs using different datasets in Python using different packagesUnderstand multiple inference algorithms and how to select the right algorithm to resolve your problemsDevelop a Bayesian approach to inference in HMMsImplement HMMs in finance, natural language processing (NLP), and image processingDetermine the most likely sequence of hidden states in an HMM using the Viterbi algorithmWho this book is forHands-On Markov Models with Python is for you if you are a data analyst, data scientist, or machine learning developer and want to enhance your machine learning knowledge and skills. This book will also help you build your own hidden Markov models by applying them to any sequence of data.Basic knowledge of machine learning and the Python programming language is expected to get the most out of the book. N° de réf. du vendeur LU-9781788625449
Quantité disponible : Plus de 20 disponibles
Vendeur : Chiron Media, Wallingford, Royaume-Uni
PF. Etat : New. N° de réf. du vendeur 6666-IUK-9781788625449
Quantité disponible : 10 disponible(s)
Vendeur : BargainBookStores, Grand Rapids, MI, Etats-Unis
Etat : New. Hands-On Markov Models with Python (Paperback or Softback) 0.7. N° de réf. du vendeur BBS-9781788625449
Quantité disponible : 5 disponible(s)
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Paperback / softback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 222. N° de réf. du vendeur C9781788625449
Quantité disponible : Plus de 20 disponibles
Vendeur : Rarewaves.com USA, London, LONDO, Royaume-Uni
Paperback. Etat : New. Unleash the power of unsupervised machine learning in Hidden Markov Models using TensorFlow, pgmpy, and hmmlearnKey FeaturesBuild a variety of Hidden Markov Models (HMM)Create and apply models to any sequence of data to analyze, predict, and extract valuable insightsUse natural language processing (NLP) techniques and 2D-HMM model for image segmentationBook DescriptionHidden Markov Model (HMM) is a statistical model based on the Markov chain concept. Hands-On Markov Models with Python helps you get to grips with HMMs and different inference algorithms by working on real-world problems. The hands-on examples explored in the book help you simplify the process flow in machine learning by using Markov model concepts, thereby making it accessible to everyone.Once you've covered the basic concepts of Markov chains, you'll get insights into Markov processes, models, and types with the help of practical examples. After grasping these fundamentals, you'll move on to learning about the different algorithms used in inferences and applying them in state and parameter inference. In addition to this, you'll explore the Bayesian approach of inference and learn how to apply it in HMMs.In further chapters, you'll discover how to use HMMs in time series analysis and natural language processing (NLP) using Python. You'll also learn to apply HMM to image processing using 2D-HMM to segment images. Finally, you'll understand how to apply HMM for reinforcement learning (RL) with the help of Q-Learning, and use this technique for single-stock and multi-stock algorithmic trading.By the end of this book, you will have grasped how to build your own Markov and hidden Markov models on complex datasets in order to apply them to projects.What you will learnExplore a balance of both theoretical and practical aspects of HMMImplement HMMs using different datasets in Python using different packagesUnderstand multiple inference algorithms and how to select the right algorithm to resolve your problemsDevelop a Bayesian approach to inference in HMMsImplement HMMs in finance, natural language processing (NLP), and image processingDetermine the most likely sequence of hidden states in an HMM using the Viterbi algorithmWho this book is forHands-On Markov Models with Python is for you if you are a data analyst, data scientist, or machine learning developer and want to enhance your machine learning knowledge and skills. This book will also help you build your own hidden Markov models by applying them to any sequence of data.Basic knowledge of machine learning and the Python programming language is expected to get the most out of the book. N° de réf. du vendeur LU-9781788625449
Quantité disponible : Plus de 20 disponibles